Checkpoint of the Future
Table of Contents

1. Introduction .. 2
2. Concept Definition.. 3
3. Checkpoint of the Future Structure .. 5
4. 2012 Checkpoint .. 6
 4.1 Policy & Regulation .. 6
 4.2 Operations.. 7
5. Risk Assessment and Differentiation ... 8
6. Blueprint 2014 .. 10
7. Blueprint 2017 .. 12
8. Blueprint 2020 .. 14
9. Roadmap .. 16

Appendix A – Description of Roadmap Modules
 Risk Assessment and Differentiation... 18
 Passenger Data .. 18
 Known Traveler .. 18
 Identity Management .. 18
 Behavior Analysis ... 18
 Alternative Measures for Unpredictability & Deterrence.......................... 18
 Enhanced Detection Capability ... 19
 Checkpoint Management System and Secure Passenger Information Network 19
 Passenger Process ... 19
 Staff Planning and Allocation ... 19
 Remote Image Processing .. 19
 Lane Design .. 19

Acknowledgements:
IATA would like to acknowledge O&I Consulting for providing the checkpoint images used in this document.
Introduction

The purpose of this Executive Summary is to provide an overview of the Checkpoint of the Future Concept, including the envisaged capabilities in the 2014, 2017, and 2020 timeframes, and a roadmap to aid planning and coordination of solution development.

The need to modernize and improve passenger security screening has been a topic of conversation across the aviation industry for many years. For regulators, the conversations are driven by the need to adapt security in the face of continuously changing threats. For airlines and airports this is also driven by the need to ensure compliance with regulations, while balancing the very real issue of efficiency. For passengers, the conversations are driven by long security lines, the complexity of rules and often invasive processes. Air traffic is also projected to continue to grow, with the problems and costs likely to increase accordingly.

The Checkpoint of the Future concept details the considerations that the aviation community needs to address in order to move away from the rigid and predictable “one-size-fits-all” approach that characterizes today’s passenger security screening environment to a risk based approach based on security outcomes, process improvement, and technology. The evolution to the Checkpoint of the Future can be accomplished using options tailored to meet the specific needs of government and industry within a State, the airport environment in which the checkpoint operates, and the availability of emerging technologies.

It should be emphasized that not all concepts within the Checkpoint of the Future project will be suitable or desirable in all regulatory environments, and as such the project defines a menu of options for implementation. Passenger risk assessment and differentiation may be achieved through many different means, for example on a per-flight basis, using behavior analysis or utilizing passenger data. Equally, unpredictability will need to underpin all aspects of the screening process. As one-size-fits all is not a desirable situation for screening today, neither will it be for the next generation of screening – this concept offers many options and suggestions that can help move screening towards being more efficient, effective and passenger-friendly.
Government and industry have come together to collaborate on a way to move the Checkpoint of the Future concept forward to reality. It is important to note that many States and organizations have also made important strides toward risk based security. There are ongoing evaluations of Known Traveler programs, biometrics and behavior analysis to name just a few. The Checkpoint of the Future concept builds on these collective efforts and also provides a longer term plan toward global adoption of risk based security initiatives.

As with any serious undertaking, a defined outcome must be established to ensure that a successful conclusion can be defined. To that end, the stakeholders have agreed that the goals of the Checkpoint of the Future are:

Strengthened security
- Focus resources based on risk
- Increase unpredictability
- Better use of existing technologies
- Introduce new technologies with advanced capabilities

Increased operational efficiency
- Increase throughput, optimize asset utilization
- Ultimately, reduce cost per passenger
- Maximize space constraints
- Maximize staffing resources

Improved passenger experience
- Reduce queues and waiting times
- Use technology for a less intrusive and disruptive search

The detailed Concept Definition for the Checkpoint of the Future is the product of numerous and global, aviation security subject matter experts, from both public and private sectors, and represents majority views. These stakeholders acknowledge that the Concept Definition is a living document and will evolve over time as operational tests and introduction of emerging technologies occur.

Comprised of senior officials from across the stakeholder spectrum, the Checkpoint of the Future Advisory Group is charged with providing guidance to ensure that a detailed vision and scalable roadmap result from the concept development process. The Checkpoint of the Future Expert Groups provide subject matter expertise on the technology, operations and regulatory aspects of the concept and represent an extremely broad cross section of the aviation security environment.

In addition to the Concept Definition, the stakeholders are developing an Operational Test and Evaluation Program (OT&E) that will evaluate the key Checkpoint of the Future components to meet the goals identified above. Results of the operational trials will be used to update and revise the Concept Definition accordingly.
The Concept Definition is composed of five key sections:

- A 2012 Checkpoint report that identifies the status of regulatory and policy issues, the operational environment and deployed technologies with respect to the processes most likely to be affected by the Checkpoint of the Future project
- Three detailed documents that define how the Checkpoint of the Future could operate in the near term (Blueprint 2014), medium term (Blueprint 2017), and long term (Blueprint 2020)
- A Roadmap characterized by a listing of key Checkpoint of the Future modules and an assessment of the capabilities envisaged
The Checkpoint of the Future Concept is split into a number of logical modules (and components within them) which are intended to be implementable either individually or collectively, according to the needs of the State and airport environment.

The Checkpoint of the Future is therefore a collection of options, focused on:

- Strengthening security
- Increasing operational efficiency
- Improving the passenger experience

Options for implementing each module have been identified in the Blueprints, with recommendations highlighted throughout, based on feedback from government and industry experts. It is anticipated these shall be updated as the project progresses to reflect lessons learned and advances in the checkpoint.

Checkpoint of the Future Structure

The Checkpoint of the Future is split into a number of logical modules (and components within them) which are intended to be implementable either individually or collectively, according to the needs of the State and airport environment.

Options for implementing each module have been identified in the Blueprints, with recommendations highlighted throughout, based on feedback from government and industry experts. It is anticipated these shall be updated as the project progresses to reflect lessons learned and advances in the checkpoint.

Checkpoint of the Future

<table>
<thead>
<tr>
<th>Function</th>
<th>Modules</th>
<th>Components</th>
<th>CoF 2014</th>
<th>CoF 2017</th>
<th>CoF 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Data</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known Traveler</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior Analysis</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Measures</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity Management</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Information Management System</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced Detection Capability</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passengers</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Image Processing</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Design</td>
<td>Specific Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options for implementing each module have been identified in the Blueprints, with recommendations highlighted throughout, based on feedback from government and industry experts. It is anticipated these shall be updated as the project progresses to reflect lessons learned and advances in the checkpoint.
2012 Checkpoint

As part of the Concept Definition, the regulatory requirements, policies, operational scenarios and technologies used in the airport environment in 2012 have been considered and how they may be impacted as a result of the Checkpoint of the Future evolution.

Areas of the regulatory framework that may need to be adapted, or the additional guidance material needed when implementing the Checkpoint of the Future have been identified. Policy issues are also considered, particularly where there are strong indications that public perceptions will need to be addressed.

The assessment assumes that the following areas might be included in the scope of the Checkpoint of the Future:

- Passenger Differentiation
- Data Integration
- Technology and Detection Standards
- Passenger Experience and Throughput
- Behavioral Analysis
- Known Traveler
- Checkpoint Configuration
- Randomness
- Biometrics and Identity Management

4.1 Policy & Regulation

The ICAO Aviation Security Panel’s priority is to address threats to civil aviation while continuing to promote the implementation of risk based security measures. Such measures must be appropriate and proportionate to the threat, thus optimizing air transport efficiency. Many national authorities are also exploring the introduction of more outcome or risk based security programs. The Checkpoint of the Future concept is consistent with this general shift towards risk based security measures, and is considered to complement the baseline SARPs contained in ICAO’s Annex 17.

Regarding passenger differentiation, it is widely agreed that any risk based passenger screening approach should respect fundamental human rights and privacy, and not in any way profile a passenger based on gender, religion, or race. Mutual recognition of risk based passenger screening approaches amongst Member States is essential to allow effective and efficient implementation by any one State.

Therefore, the concept of regulating differentiated screening and the use of risk based measures are growing in acceptance, but concerns may arise when it comes to how those measures are implemented. For example, expanding the use of passenger data for security purposes in addition to immigration and customs will require legislative change in many States. Indeed, the collection and use of passenger information may also raise data privacy concerns. Another example could be the use of behavior analysis which may be acceptable in some States and not in others, as will the practicality of implementing different types of screening lanes. Finally, the overarching aviation security policy of regional authorities such as the European Commission will also need to be considered.
4.2 Operations

Passenger screening practices today are usually focused around identification of prohibited items. All passengers are screened to a predetermined National standard by trained security staff. A typical screening checkpoint may comprise:

- Screening the passenger through a walk-through metal detector (WTMD)
- Conducting a physical search by hand of persons who cause an alarm activation or resolving such an alarm using security (body) scanner technology
- Selecting at random a percentage of persons who have not caused the WTMD to alarm for a search by hand according to National legislation
- Selecting passengers for further screening with a security scanner or by hand
- X-ray screening of all items carried, including coats and jackets
- Separate x-ray screening of shoes

Cabin baggage is typically screened according to National legislation using some or all of the following processes:

- Separate x-ray screening of all laptops and large electrical items
- Separate screening of Liquids, Aerosols and Gels (LAGs)
- Physical search of all items rejected by the x-ray operator
- Use of explosives trace detection equipment for further search of selected items

Screening equipment is used to assist the screening process, typically:

- Cabin baggage x-ray equipment
- Trace detection equipment (ETD)
- Vapor detection equipment
- Walk through metal detectors
- Hand Held Metal Detectors (HHMD)
- Security Scanners

Some of the key issues that occur in today’s checkpoints are related to space, layout, training of staff, technology and inflexibility of processes.

The requirement to divest liquids, electronic items, coats and shoes can significantly affect checkpoint throughput. This may in turn be a result of poor queue management, passenger preparation, availability of information to enable passengers to properly divest or lack of space for divesting.

As technology to scan liquids and produce multi-dimensional complex images becomes more widely used, the screening equipment may become a more important factor in throughput rate than the divestiture.

Other constraints that exist today may include lack of funding for technology and staff, and inability to accurately forecast demand and measure checkpoint performance (and hence appoint staff appropriately).

There is also a lack of connectivity and networking within the checkpoint and with other airport systems at the majority of checkpoints, leading to all elements acting independently and an inability to provide real time data to the checkpoint to assist with the screening process.
Risk Assessment and Differentiation

The principle of risk assessment is to objectively enable appropriate screening measures to be applied to passengers and to enable an efficient throughput, based on what is known or unknown about them. Risk based screening considers variations in the level of screening that can be applied to individual passengers or groups of passengers.

Risk based screening is based on the following premises:

- The majority of airline passengers present a low risk to aviation
- Some assessment may be made using travel data
- Further assessment can be made through passengers voluntarily providing more information about themselves, through known traveler programs
- Behavior detection and interviewing techniques can be also employed to assess risk
- Security can be increased by focusing on unknowns

Differentiation simply means screening different passengers in different ways. It does not mean screening based on race, gender or religious beliefs. Passengers also may be selected for an elevated level of screening randomly to incorporate unpredictability, as is the case today with secondary screening, or for example, because of an unusual ticket purchase or other travel related behaviors.

Differentiation may also be applied to an entire flight or all passengers for a specific time period, not just to an individual traveler.

There may be many inputs to the determination of how a passenger is categorized for screening. Criteria for risk assessment will need to be determined at National level, as will the choice of data sources to be scrutinized, the use of passenger data and what factors will contribute to the assessment.

It is assumed that the authority responsible for screening at the point of departure will have primary responsibility for determination of risk assessment. The country of transfer or arrival may also make an assessment for security purposes. If there is more than one assessment, the highest level of risk assessment determined should be used for screening. Where Government assessment of risk is undertaken, it will be a contributing factor to a number of other criteria, with the final categorization being made at the checkpoint entrance.

The actual level of screening that each category of passenger undergoes will depend on the measures applied by the screening authority. Differentiation between known traveler, normal and enhanced may mean different levels of divestiture, different sensitivity of equipment or different levels of randomness.

Passengers will need to be screened, as a minimum, to an acceptable baseline level, regardless of risk categorization. Countries moving away from a one-size fits all screening and following strict principles and a strong framework should be recognized by other countries, on the basis that the security outcomes are similar. This means that additional screening after the checkpoint should not be required for passengers departing to other countries.
Risk assessment will be a continuous process that starts at reservation and ends at boarding. Contributing factors to risk assessment might include some or all of:

- Flight – route or type (business, tourism)
- Traveler type (such as crew, staff, military personnel)
- Passenger data
 - Watch-list check from match with travel document information
 - Rules based analysis of reservations and check-in data
- Membership of a known traveler scheme subject to
 - Background checks
 - Current and valid membership
- Presence on Interpol Lost and Stolen Passports database
- Checks against other Government databases
- Associated passengers on the same flight
- Behavior analysis
- Alternative measures such as random selection for enhanced screening, trace detection and explosive detection dogs
With a view toward the near term, the Checkpoint of the Future in 2014 focuses on:

- Integrating new procedures to facilitate risk based screening and decision making
- Optimizing resource and asset utilization
- Integrating available technology and repurposing existing equipment

Blueprint 2014 describes a checkpoint that achieves the benefits and elements cited above and can be implemented in both large and small airports. The emphasis is therefore to introduce new and innovative procedures that maximize the opportunities presented by the existing checkpoint configuration.

The key features available in the 2014 Checkpoint of the Future include:

Risk Assessment (according to National criteria)

- Some use of API and PNR data for pre-screening risk assessment
- Covert and overt behavior analysis techniques deployed at checkpoint
- National known traveler program and differentiated checkpoint screening program
- Alternative measures to support reduced random requirements
Technology

- Remote image processing from checkpoint at an airport specific basis
- Biometric verification e-Gate at the checkpoint for known travelers
- Risk assessment communicated to checkpoint, ideally in dynamic solution but likely through boarding token
- Explosive detection as an alternate measure prior to screening line
- X-ray technology advancement to enable LAGS screening with divesting (e.g. Type C in Europe)
- Real time data collection of checkpoint KPIs (e.g. passenger queue time and throughput)
- Limited deployment of flexible algorithms for advanced X-ray threat identification
- Passenger Security Scanners deployed as the secondary search device for passengers

Operations

- Dynamic passenger guidance of screening process and way-finding at entry and in checkpoint
- Queue management program to display queue time and customer service support
- Improved staff allocation and use of behavior analysis
- Checkpoint lane design improvement based on IATA Recommended Practice 1701H and passenger experience elements
- Program for regular passenger feedback that incorporates modern technology
Blueprint 2017

The 2017 Checkpoint of the Future is focused on updating technologies and processes to increase the security value of the checkpoint, while maintaining a strong focus on customer service to enable greater passenger satisfaction. It includes some major advances in risk assessment, dynamically delivering a result to the checkpoint to enable greater automation and a better passenger experience. It envisages increased use of biometrics and remote image processing, coupled with advances in screening technologies and targeted algorithms to achieve less divesting and faster throughput.

The key features available in the 2017 Checkpoint of the Future include:

Risk Assessment (according to National criteria)

- National Targeting Centers or Passenger Information Units to analyze passenger data and other inputs, implemented in some States to provide input to overall risk assessment
- Covert and overt behavior analysis techniques deployed at checkpoint with limited connectivity to checkpoint for real-time update to risk score
- International cooperation and recognition of known traveler programs
- Dynamic risk score adjustment based on identity is in operation at select checkpoints
Technology

- Remote image processing from checkpoint at airport and country levels
- Identity management system based on travel document (e.g. passport) is common at checkpoints across the globe
- Automated biometric gates to determine access to known traveler lane
- Risk assessment and identity management systems connected via a secure information network
- Alternative measures for explosive detection at checkpoint and front-of-house airline processes
- X-ray technology advancement to enable LAGS screening without need to divest and no volume restrictions (e.g. Type D in Europe)
- Real time data collection of checkpoint KPIs (e.g. passenger queue time and throughput) with forecast ability to provide queue time to passenger on-demand via a checkpoint management system
- Regular deployment of flexible algorithms for X-ray targeted threat detection
- Passenger security scanners are the primary device for passenger screening

Operations

- Separate known traveler queue and lane with biometric identity authentication at entry
- Dynamic device monitoring to support operational management decision making
- Dynamic passenger guidance of screening process and way-finding at entry and in checkpoint
- Queue management program to display queue time and customer service support
- Improved staff allocation and use of behavior analysis
- Checkpoint lane design incorporates IATA Recommended Practice 1701H and passenger experience elements
- Program for regular passenger feedback that incorporates modern technology
From 2020 and beyond it is envisaged that the passenger will be able to flow through the security checkpoint without interruption unless the advanced technology identifies a potential threat. A passenger will have a level of security screening based on information from states of departure and arrival through bilateral risk assessments in real-time. In terms of the passenger experience, there will no longer be the burden of divesting by default, and there are expected to be little to no queues as a result of the enhanced speed at which screening can occur.

The key features available in the 2020 Checkpoint of the Future include:

Risk Assessment

- Passenger and flight data risk assessments are common practice with international cooperation
- Unpredictable alternative measures are in effect to deter and detect
- Automated behavior analysis with real-time update of the risk score to the checkpoint
- Known traveler program and differentiated checkpoint screening program across multiple countries
Technology

- Stand-off identity management system based on biometric capture and verification
- Automated biometric gates to confirm eligibility for all passengers regardless of status
- Real time risk score updates and level of screening decisions
- Alternative measures for explosive detection incorporated into checkpoint and front-of-house processes
- Screening technology complete with advanced threat detection and dynamic adjustment based on the risk score of the passenger
- Remote image processing with automatic decision algorithms
- Passenger security scanners are the primary device for passenger screening

Operations

- Dynamic passenger guidance of screening process and way-finding at entry and in checkpoint
- Queue management program to display queue time and customer service support
- Improved staff allocation and use of behavior analysis
- Fully flexible checkpoint lanes able to screen all risk categories of passengers
- Program for regular passenger feedback that incorporates modern technology
The modules identified below are considered key parts of the Checkpoint of the Future that could be implemented in the short, medium and long term. Each module can be implemented to varying degrees depending on the needs, sensitivities, legal requirements, and abilities of the State, the airport environment in which the Checkpoint operates, and the availability and affordability of technology.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Data</td>
<td>Basic risk assessment using rules based analysis</td>
<td>Risk assessment based on wider range of data and inputs, national targeting centers where applicable Dynamic delivery of risk score to checkpoint</td>
<td>Global, national, international agencies, multi-lateral agreements, data sharing, interoperability</td>
</tr>
<tr>
<td>Known Traveler</td>
<td>Pre screening risk assessments through national and bilateral known traveler programs</td>
<td>Expanded bilateral agreements of known traveler programs with mutual recognition of risk assessments</td>
<td>International, interoperable known traveler programs with mutual recognition of risk assessments</td>
</tr>
<tr>
<td>Identity Management</td>
<td>Biometric verification for Known Travelers</td>
<td>Identity confirmation at checkpoint, linked to passenger risk assessments</td>
<td>Use of e-passports for identity authentication Stand off identity management solutions</td>
</tr>
<tr>
<td>Behavior Analysis</td>
<td>Direct questioning Behavioral observation (by specialists)</td>
<td>Automatic behavior detection Automated integration with risk assessment</td>
<td>Behavioral characteristic observation (whole of airport)</td>
</tr>
<tr>
<td>Alternative Measures for Unpredictability and Deterrence</td>
<td>Explosive detection dogs Random selection for high risk screening ahead of the checkpoint</td>
<td>Document and passenger trace detection</td>
<td>Alternative measures utilized instead of traditional random selection methods Stand-off and on the move screening using remote screening technologies Screen all personal electronics without divesting Enhanced automated detection of explosives Leave coats and jackets on without divesting metals Dynamic and risk based deployment of detection algorithms (explosives, liquids, guns, knives, etc.)</td>
</tr>
<tr>
<td>Enhanced Detection Capability</td>
<td>Liquid explosive detection systems (LEDSS) for LAG alarms (for those areas permitting LAG screening) Multi view and multi energy x-ray technology Advanced, officer assistance, detection algorithms Process improvement for belts and shoes</td>
<td>Screen liquids without divesting Screen tablets and e-Books without divesting Increased automated detection of explosives Leave coats and jackets on with metal divested Dynamic adjustment of equipment sensitivity (flexible lanes)</td>
<td>Stand-off and on the move screening using remote screening technologies Screen all personal electronics without divesting Enhanced automated detection of explosives Leave coats and jackets on without divesting metals Dynamic and risk based deployment of detection algorithms (explosives, liquids, guns, knives, etc.)</td>
</tr>
</tbody>
</table>
This roadmap is further designed to support and drive solution development and shall evolve as lessons are learned and technologies become available.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint Management System</td>
<td>Checkpoint real time measurement and management system</td>
<td>Advanced approaches to record, measure and assess checkpoint performance, with real time link to supervisors</td>
<td>Direct and tailored passenger messaging, with information both at the airport and before travel</td>
</tr>
<tr>
<td></td>
<td>Interface standards and approaches for connection of security equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure Passenger Information Network</td>
<td>Dedicated secure network, following information security principles to enable Known Traveler differentiated screening</td>
<td>Advanced cryptography for enhanced network security and all passenger risk based screening</td>
<td>Wide area networking for secure distributed risk assessments</td>
</tr>
<tr>
<td>Passenger Process</td>
<td>Optimized queue structures for efficient lane utilization and throughput</td>
<td>Dynamic passenger guidance and way finding</td>
<td>Simplified rules through automation and improved process</td>
</tr>
<tr>
<td></td>
<td>Improved understanding of security rules and procedures to minimize delays due to non-compliance</td>
<td>Passenger feedback system using advanced technologies (including mobile and web based)</td>
<td></td>
</tr>
<tr>
<td>Staff Planning and Allocation</td>
<td>Real time collection of KPIs and training focused on individual performance, security compliance and passenger experience</td>
<td>Officer allocation best practice (e.g. teams, flexible resource) to reduce passenger waiting and lane down time</td>
<td>Forecasting best practices to improve capacity and demand matching</td>
</tr>
<tr>
<td>Remote Image Processing</td>
<td>Maximized asset and officer utilization</td>
<td>Enhanced threat detection officer assistance algorithms and risk based distribution of images</td>
<td>Targeted image review through advanced algorithms and risk based decision making</td>
</tr>
<tr>
<td>Lane Design</td>
<td>Improved equipment and process automation to maximize throughput</td>
<td>Flexible lane design for optimum operational efficiency</td>
<td>Separated link between the passenger and bag screening process to reduce dependencies and optimize throughput</td>
</tr>
</tbody>
</table>
Appendix A – Description of Roadmap Modules

Risk Assessment and Differentiation

There can be many inputs to the determination of how a passenger is categorized with regard to risk, including behavior analysis, passenger data, previous history, travel patterns and membership of a known traveler program. It will need to be determined at national level which elements are contributing factors, and which take precedence to determine a risk score.

Passenger Data

Passenger data, including Passenger Name Record (PNR), Advance Passenger Information (API) and check-in information are existing data sources that could potentially be used to provide a risk assessment of passengers prior to their entry to the security checkpoint; however, a full range of data sources will need to be considered. The level of assessment may vary. Risk assessment may be conducted by a government agency, the airline, or a combination of the two; with a shared goal of integrating information into the passenger screening process to mitigate privacy concerns and legal restrictions.

Known Traveler

A pre-screening program could allow government agencies to perform detailed background checks for a subset of travelers who voluntarily enroll in a program to supplement physical screening at the airport. In addition, consideration may be given to individuals with pre-existing national security clearances, those in armed forces, or other similar special circumstances. In the long term, an interoperable, globally accepted known traveler program could be developed. The provision of a known-traveler program will always be underpinned by an element of unpredictability.

Identity Management

Identity management could enable automation and process improvement; and could also provide a mechanism for cross-referencing a passenger’s identity to their risk assessment at the checkpoint. Biometric collection, identity authentication and later verification is envisioned, coupled with passenger data and risk assessment, to ensure the passenger’s identity is true, their passage through security validated, and the appropriate level of screening applied.

Behavior Analysis

Behavior analysis is considered an additional element of risk assessment that could be combined with other elements or used alone. The application may range from individual questioning to a broader observation as the passenger moves through the airport. The results from the analysis can be combined with other assessments to determine the level of screening to be applied.

Alternative Measures for Unpredictability & Deterrence

Random selection, remote screening prior to arrival at the checkpoint, and use of explosive detection dogs, all provide additional or alternative measures to the risk assessment modules as described above.
Enhanced Detection Capability

As technology evolves, there may be opportunities to improve processes and allow passengers to divest less at the checkpoint. The roadmap suggests a gradual evolution towards the long term goal of walk-through screening, leaving personal electronics and liquids in bags, and removing the need for passengers to remove coats and shoes. Not all measures would apply to all levels of screening.

Checkpoint Management System and Secure Passenger Information Network

Management of the flow of data, performance measurement and performance monitoring will become critical as the level of technology and interconnectivity increases at the checkpoint. Cyber security will play a vital role as will effective network and systems management to ensure robust, reliable and available systems are in place.

Passenger Process

Queue times and throughput could be improved, even in the short term, through the implementation of best practice checkpoint measurement and management systems. In the medium term, video analysis of checkpoint performance could assist in automating management of the checkpoint, providing feedback on peaks, staffing requirements and process efficiency. The passenger process module aims to creating a more positive passenger experience through the simplification and reduction of the requirements and processes that are imposed on the passenger.

Staff Planning and Allocation

Process improvements and automation that provide more effective measurement, forecasting and planning could be implemented to better manage staff deployment at the checkpoint.

Remote Image Processing

Screening of images at a central point, rather than at each lane could maximize both technical assets and staff utilization.

Lane Design

Improved equipment and process automation could maximize throughput in the short term, with the implementation of flexible lanes, able to adjust screening sensitivity depending on risk assessment, envisaged for 2020. The introduction and increase of automation into the checkpoint will allow passengers and their bags to be automatically routed through the process in a controlled and orderly manner, optimizing passenger throughput and security officer resources.
For further information about the Checkpoint of the Future program
email
checkpoint@iata.org

or visit our website
www.iata.org/checkpoint

Geneva – Executive Offices
33, Route de l’Aeroport
PO Box 416
CH-1215 Geneva 15 Airport
Switzerland
Phone: +41 22 770 2525
Fax: +41 22 798 3553

Montreal – Head Office
800 Place Victoria
PO Box 113
Montréal, Quebec H4Z 1M1
Canada
Phone: +1 514 874 0202
Fax: +1 514 874 9632

Washington – North America
1201 F Street, N.W.
Suite 650
Washington, DC 20005
United States
Phone : +1 202 628 9292
Fax : +1 202 628 9448