Benefits of Optimizing Maintenance Intervals

Khwaja M. (KM) Ali / Brian McLoughlin
Maintenance Economics/ Boeing Professional Services
October 17-19, 2012
Atlanta, GA
Outline

• Perspective on Maintenance Check Intervals and Cost

• Check Intervals can be optimized beyond MPD

• Boeing’s new Statistical Analysis (SASMO*) Technology

• Benefits of Optimizing your Check Intervals

*SASMO: Statistical Analysis for Schedule Maintenance Optimization
Sample Operating Cost Distribution

- Total Revenue
- CAROC
- (Cash Airplane Related Cost
- Ownership Cost
- System Cost
- Payload Cost
- Flight Crew
- Landing
- Cabin Crew
- Nav
- Station
- Fuel
- Maintenance
- Profit
- TOC
- AROC
- 787-8
- 3,000 nm Trip
- Fuel: $3.75/USG (2012)
- US International Rules

Maintenance check interval optimization can significantly improve profit
Scheduled Checks are 16% of Total Maintenance Cost
- Can be optimized

- 737-800W
- Stage Length: 800nm (2 Fhr/Trip)
- Labor Rate: All Contract @ $55/Mhr
- No LLP, No Overhead
Can Operator Check Intervals be optimized?

Yes!

Requires:
- FAA allows and operators do it for their benefit
- Requires Operator In-Service data analysis

Benefits:
- Maintenance Cost reduction
- Airplane availability for revenue generation
Leveraging In-Service Data to Drive Maintenance Efficiency

Operator Maintenance Data
- Scheduled Maintenance
- Delay & Cancellation
- Component Removal
- Log Book
- Shop records
- Maintenance Cost

Data Analysis
- Predictive Modeling
- Economics Analysis
- Risk Analysis
- Age Analysis
- Utilization Analysis
- Root Cause Analysis

ISDP Data

Optimized Airline Operation

Airplane Production & Retrofit

Note: (1) Boeing Patent 2010070237 (3/10)
Aircraft Maintenance Philosophy Evolution

History of Continuous Improvement

1968
Scheduled Mx. Logic
- Overhaul
- Hard time limits

1970
“Component“ Oriented
- Bottom Up
- On condition
- Condition monitoring (non safety)

1980 - Current
“System” Oriented
- MSG-3
 - Multiple Revisions
 - Top Down
 - Reliability centered
 - Damage tolerance
 - Corrosion prevention
 - Zonal analysis
 - Structural health
 - Fatigue damage

MSG

- MSG-1
- MSG-2
- MSG-3

Efficiency

Time
Aircraft Maintenance Philosophy Evolution

History of Continuous Improvement

- **1968**
 - MSG-1
 - Scheduled Mx. Logic
 - Overhaul
 - Hard time limits

- **1970**
 - MSG-2
 - "Component " Oriented
 - Bottom Up
 - On condition
 - Condition monitoring (non safety)

- **1980 - Current**
 - MSG-3
 - Multiple Revisions
 - "System" Oriented
 - Top Down
 - Reliability centered
 - Damage tolerance
 - Corrosion prevention
 - Zonal analysis
 - Structural health
 - Fatigue damage

- **2008**
 - "Statistical Intervals"
 - IP 44
 - MSG-3 Supplement
 - Representative sample
 - Comprehensive data set:
 - Scheduled
 - Unscheduled
 - Spec 2000 or equivalent
 - Statistical analysis engine
 - Engineering judgment
 - Example solution:
 - Boeing SASMO
Outline

• Perspective on Maintenance Check Intervals and Cost
• Check Intervals can be optimized beyond MPD
• Boeing’s new Statistical Analysis (SASMO) Technology
• Benefits of Optimizing your Check Intervals
How Does SASMO Work?

SASMO Application + OEM Engineering

ISDP Data

• Scheduled Maintenance
• Log Book
• Component Removal
• Delay & Cancellation
• Shop records
• Maintenance Cost

Task Intent / Mapping

• MSG-3
• Task Procedure

Data

• Processing
• Mining
• Categorization

SASMO(1) Statistical Analysis Engine

SASMO Statistical Output

• IP-44 Compliant
• Optimal intervals
• Regulatory justification

Note: (1) Boeing Patent 2010070237 (3/10)
Setting Optimal Maintenance Intervals

System Degradation

Significant Finding (System Failure)

Minor Defect (Latent Failure)

Early inspection - NFF

Time

Effective Interval

T_{MF}

T_{SF}

Opportunity For Preventative Maintenance

Minimize Looking Too Early (NFF) and Too Late (In-Service Failures, Unscheduled Maintenance)

Significant Finding

• Reduction in functionality or unacceptable operational / economic penalties

Minor Finding

• No immediate functional, operational, or economic impact

High probability of Unscheduled Maintenance

Copyright © 2012 Boeing. All rights reserved.
Interval Selection Example

Boeing SASMO Maintenance Statistical Analysis Engine

As Opportunity increases, Risk increases (though not at the same rate)
Boeing SASMO Interval Recommendations

Customer Objectives
- Technical Requirements
- Business Objectives
- Operational Capabilities

Engineering Expertise
- OEM Detailed Aircraft Design Knowledge
- Aircraft Certification Limits

SASMO Interval Recommendation

Statistical Analysis
IP-44 Compliant

SASMO / IP44 Approval
SASMO Optimization Process

SASMO Engagement

Gather Data
- Operator specific
- Reliability program
- Mx. planning
- Schedule data
- Non-routine

Optimize Tasks
- Rationalize tasks
- MPD correlation
- Task escalation / de-escalation
- Statistical rigor

Update Program
- Customer objectives
- Unique tasks
- Mx. program packaging

Regulatory Approval
- OEM Support
- Review of analysis
- SASMO justifications
- APM approval

Transition Aircraft
- Transition package to new AMP
- Training customer staff
- Re-bridge as needed

SASMO Statistical Output
- Accelerated process
- Optimal intervals
- MPD tailored to your capabilities & operation
- Regulatory justification and support

4-6 months
Airline Benefits of Boeing SASMO

<table>
<thead>
<tr>
<th>Task Intervals</th>
<th>Optimized</th>
<th>Airplane Bridging</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Labor Hours</td>
<td>Down</td>
<td>Reliability Program</td>
<td>Review</td>
</tr>
<tr>
<td>Aircraft Availability</td>
<td>Up</td>
<td>Maintenance Program</td>
<td>Review</td>
</tr>
<tr>
<td>Reliability</td>
<td>Up</td>
<td>Add’l. Revenue Potential</td>
<td>Up</td>
</tr>
<tr>
<td>Implementation Speed</td>
<td>Up</td>
<td>Maintenance Cost</td>
<td>Down</td>
</tr>
</tbody>
</table>

A Tailored Opportunity Assessment Can Be Created For Your Airline
Why Partner With Boeing?

- OEM airplane knowledge
- Regulatory relationships
- Maintenance programs
- Reliability programs
- OMP experience
- Execution ready

OEM Engineering support
- Statistically rigorous
- Regulator approved
- IP-44 compliant

SASMO Optimized Maintenance Program

Global Feet & OEM Data
- OEM Design Data
- Global Fleet Maintenance Data

Boeing Expertise
- Multiple fleets
- Typically many responsibilities
- 50+ fleets
- Focused and ready

Data
- Airline fleet
- Airline engineering
- Global fleet
- OEM engineering

Tools
- SASMO IP-44 Compliant
- ?

Get Further, Faster With an OEM-backed Maintenance Program
Outline

• Perspective on Maintenance Check Intervals and Cost
• Check Intervals can be optimized beyond MPD
• Boeing’s new Statistical Analysis (SASMO) Technology
• Benefits of Optimizing your Check Intervals
Check Interval Optimization

<table>
<thead>
<tr>
<th></th>
<th>Original Check Interval</th>
<th>After Optimization (25%)</th>
<th>Checks Saved in 24 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Check (Days)</td>
<td>90</td>
<td>113</td>
<td>24</td>
</tr>
<tr>
<td>C-Check (FHRS)</td>
<td>6,000</td>
<td>7,500</td>
<td>3</td>
</tr>
<tr>
<td>D-Check (Years)</td>
<td>8</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Per Airplane! INTEGRATED COST ANALYSIS SYSTEM

First Public View
With Optimization unit A-Check cost reduces 20%
All Checks unit costs reduces ~ 25%
1.2 additional days per year for revenue service

Days-Out-of-Service - 24 year Life Cycle (DoS)

- **DoS Original**
 - Days Out of Service:
 - A-Check: 36.5
 - C-Check: 56.0
 - D-Check: 19.2
 - Total: 121.7

- **DoS Optimized**
 - Days Out of Service:
 - A-Check: 36.5
 - C-Check: 56.0
 - D-Check: 19.2
 - Total: 122.3

Copyright © 2012 Boeing. All rights reserved.
For a Fleet, Cost Saving are tremendous

- Check cost saving of $16.42/Fhr = $0.5 million
 (@3,020 Fhrs/Year over 10 year)

- Profit Opportunity: 1.2 days/Year = $0.4 million
 (@ $36,000 per day over 10 year)

- Benefit for Fleet of 30 737-800W = $28 million

Minimum Expenses – estimated $5 million for bridging checks and data analysis
Summary:

Benefit for Fleet of 30 737-800W = $28 million

Lower Maintenance Cost & more Revenue Service
Questions?

For more information

Please contact:

Khwaja M. (KM) Ali
Director, Maintenance Economics
Boeing Commercial Airplanes
Khwaja.m.ali@boeing.com
+1 206-766-2574

Brian McLoughlin
Sr. Mgr., Maintenance Programs Optimization
Boeing Professional Services
brian.m.mcloughlin2@boeing.com
+1 425-237-4400