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Abstract Airlines have started to focus on expanding their

product offerings beyond flights to include ancillary

products (e.g., baggage, advance seat reservations, meals,

flexibility options), as well as third-party content (e.g.,

parking and insurance). Today, however, offer creation is

rudimentary, managed in separate processes, organizations,

and IT systems. We believe the current approach is inad-

equate and that the key to profitability is to manage offers

consistently in an integrated Offer Management System

(OMS). However, realizing this vision, will require sig-

nificant advancements in the science of pricing and in

distribution. The entire scope of an OMS cannot be covered

in a single paper. Hence, to provide depth, we will focus on

what we believe is one of the most critical components of

the OMS—Dynamic Pricing of airline offers. Finally, we

discuss various industry initiatives that will enable

deployment of Dynamic Pricing of the flight product alone

or the broader scope of OMS.

Keywords Revenue Management System � Offer
Management System � Dynamic Pricing � Ancillary Price

Optimization � Machine Learning � Distribution � NDC

Introduction and motivation

Profitability is tough in the airline industry. An IATA

economic briefing (2013) concluded that the return on

invested capital for airlines was the lowest among 30

industries in the comparison study. To improve profitabil-

ity, airlines have started to focus on expanding their pro-

duct offerings beyond flights to include ancillary products,

such as baggage, advance seat reservations (ASR), meal,

and flexibility options, as well as third-party content.

However, offer construction is quite rudimentary today.

The flight product is carefully priced through the applica-

tion of revenue management systems (RMS), which have

about 40 years of advancement behind them. Yet little or

no consideration is commonly given to how ancillary

products are selected or, for that matter, priced. Today, this

is handled by two distinct processes, RMS and Merchan-

dising, which are managed under separate organizations

through different IT systems.

RMS is responsible for optimizing revenue from flight

products alone, while Merchandising is responsible for

expanding the shopping basket through upsell, cross-sell,

and through selling ancillary products. Also, limited

attention is paid to providing personalized and more rele-

vant offers.

We believe the current approach is inadequate and that

the key to profitability is to manage offers consistently in

an integrated Offer Management System (OMS). This is

not possible today, given the limitations of legacy IT sys-

tems. Legacy distribution systems delegate airline control

of offer creation to content aggregators, such as global

distribution systems (GDSs), building itineraries and pric-

ing them on the basis of filed fares and fare rules. This

means that airlines are unaware of the customer’s identity

and have limited control over the offer construction. These
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limitations prevent the airline industry from adopting

modern e-commerce and enjoying its potential benefits

(Popp 2016). At a more detailed level, these limitations are

described below.

Description and limitations of existing RMS

Incorrect view and valuation of the flight product

• In a shopping session, availability and pricing decisions

are for flights only. The value of ancillary products is

disregarded.

• Even considering flights only, a precise valuation

would require continuous prices. This is not possible

with the 26 Reservation Booking Designator (RBD)-

based inventory logic that exists today.

• The net revenue received by the airline from selling a

flight product is uncertain, as multiple fare products

with different fares are filed in the same RBD.

• Similar uncertainty exists with regard to interline

itineraries, the value of which is prorated across

interline partners according to special prorate agree-

ments (SPAs). RMS neglects the variety and sophisti-

cation of SPAs, relying instead on approximations.

Incorrect view of demand and willingness to pay

• Demand forecasting and pricing work in different

dimensions, leading to erroneous forecasting of demand

and willingness to pay (WTP):

– The RMS’ demand forecasting utilizes dimensions

to support control of the flight resources on the

basis of traffic flow, point of sale, and booking

class.

– The airline’s pricing department utilizes dimensions

to support differentiation of a customer’s WTP,

based on rules and restrictions such as customer

eligibility, return trip restrictions, minimum and

maximum stay durations, stopovers, Saturday and

Sunday night stay requirements, advance-purchase

restrictions, and combinability.

No optimization of the total product offer

• The total set of products sold by the airline is neither

optimized nor priced together, but independently.

No personalization or merchandizing

• All customers receive the same price for the same

products.

• The sales display cannot be tailored to a customer in a

way that affects his or her purchase behavior.

Contribution

In this paper we will formulate our vision for an OMS, and

discuss how we may overcome many of the limitations that

exist today. However, the entire scope of an OMS cannot

be covered in a single paper. To provide depth, we will

focus on what we believe is one of the most critical com-

ponents of an OMS—dynamic pricing (DP).

Additionally, we discuss how the changing distribution

landscape, shaped by such initiatives as IATA’s New

Distribution Capability (NDC) and a global digital trans-

formation, will dramatically influence the airline OMS.

To our knowledge, no prior published work addresses

these questions, nor are we aware of any implementation

that includes dynamic pricing of airline offers.

Organization of the paper

The paper is structured as follows: in Sect. ‘‘The Offer

Management System,’’ we define the airline offer, formu-

late our vision for the OMS, provide an overview of the

OMS and its main components, and discuss the scientific

challenges of pricing a general airline offer. In

Sect. ‘‘Dynamic pricing of offers,’’ we discuss DP of air-

line offers, the underlying assumptions, and application to

both base and ancillary products. In Sect. ‘‘A distribution

landscape in motion,’’ we discuss various industry initia-

tives that will enable deployment of DP or the broader

OMS, the distribution channels and their interactions with

the OMS, and the technology required. In Sect. ‘‘Future

research directions,’’ we offer direction for future research,

and finally in Sect. ‘‘Conclusion,’’ we provide our

conclusions.

The Offer Management System

Description of an offer

We apply the following definition, in accordance with

IATA (2016), ‘‘An offer is a proposal by an airline to a

customer for a defined set of products (flights and/or flight

related or non-flight related ancillary products) in response

to a shopping request received from a seller, possibly via

an aggregator.’’ Shopping requests may be sent with indi-

vidual traveler data (personalized) or sent without any

specific traveler data (anonymous). The shopping response

may be customized based on the traveler information that is
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passed in the request (see also Sect. ‘‘Scientific challenges

of pricing an offer’’).

Offers may not be altered, nor can elements of one offer

be combined with elements of another offer. The offer will

have certain rules and conditions attached to it, for example

how long the offer is valid for, by what time payment must

be made, how long inventory is guaranteed for, etc.

An offer consists of one or more offer items. An offer

item consists of two parts: a set of products1 and a price;

bundled together in unity. The final property of the offer

item we would like to mention is its status, mandatory or

optional. During the shopping process an offer can be

customized by selecting/deselecting optional offer items.

Consequently, the total offer price is computed by sum-

ming the selected offer items prices.

To simplify the description of offers in this paper, we

will use the following terminology. We denote by product

offer and price offer; the sets of products and the prices of

the constituting offer items, respectively. Finally we denote

the online processes that determine the product offer and

price offer, dynamic offer construction and dynamic pric-

ing, respectively.

Before we can understand the complexities of how to

dynamically price an offer, let us first consider a general

product offer.

Product set of the airline offer

Figure 1 illustrates a general airline offer composed of

mandatory and optional offer items. The individual product

sets that make up the offer items are described below. Offer

items are marked by dashed boxes. The final offer may be

customized by selecting/deselecting among the optional

offer items.

• Flight products—fare families with connecting flights

(AL-FLT1, AL-FLT2): bundles consisting of flight seats,

in-flight service, and privileges/ancillary products (free

of charge) attached with conditions and restrictions

(shown as business, premium economy, and economy

products).

• Hotel rooms—fare families with ‘‘connecting rooms’’

(Hotel A—Day 1, Hotel A—Day 2): airlines’ own hotel

properties or third-party hotels (shown as sea-view and

street-view).

• Interline flight connections (OAL-FLT).

• Base product—mandatory offer item that includes the

flight product. One and only one of the flight products

(economy, premium economy, and business fare fam-

ily) must be selected. Similarly for the hotel stay.

• Bundles of ancillaries—optional offer item targeted to

specific customer segments, such as a baggage pack

(shown as carry-on bag, 1st bag, and 2nd bag) or a

flexibility pack (shown as unlimited changes, name

change, or different itinerary). Other possibilities could

be a comfort pack (not shown), consisting of priority

boarding, middle seat free, and/or ASR.

• Ancillaries offered a la carte—optional offer items

(e.g., fare lock, cancelation, fast track, or priority

boarding), may be available only on an a la carte basis,

while other ancillaries (e.g., carry-on bag, 1st bag, 2nd

bag) may also be available as bundles.

• Third-party content—optional offer items (e.g., insur-

ance, parking, hotels, rental car).

Description of an Offer Management System

Vision

We believe that:

• The OMS should dynamically construct and dynami-

cally price offers, considering both customer and

contextual information.

• The distribution environment should provide channel

consistency with accurate content, built and controlled

centrally by the airline.

Having a detailed view of the customer’s preferences

and WTP during the shopping session allow airlines to

differentiate among customers, thus making their offers

more relevant and improving the customer experience. This

will enable airlines to improve their revenue performance.

Further, channel consistency will eliminate the confusion

and mistrust that exist today among consumers about offer

transparency.

Components of the OMS

The business logic of OMS relies on five main modules—

Content Management, Customer Segmentation, Dynamic

Offer Construction, Dynamic Pricing, and Merchandiz-

ing—that are briefly described below. Figure 2 shows how

OMS processes an incoming shopping request through

each of these modules and responds with an offer (or

multiple offers). The DP component, which is highlighted

in the figure, is the primary focus of this paper.

Content management The objective of content manage-

ment is to provide a catalog of the entire set of products

(bundled and a la carte) that the airline can sell, as

1 The IATA (2016) terminology is set of services. The terms product

and service seems to be used interchangeable in the airline industry.

Hence to simplify the description of offers in this paper we will use

the term products to collectively describe products and services.

Dynamic pricing of airline offers



explained above. We assume that the catalog is predefined

and that during the shopping flow, a product offer is con-

structed dynamically by selecting a set of products from the

catalog.

Customer segmentation The underlying assumption

behind customer segmentation is that we need to under-

stand the customer’s behavior to construct appropriate

offers. This requires that existing and future customers can

be categorized into customer segments, based on such

shared characteristics as common needs, interests, life-

styles, or socio-demographics, past purchases, to name a

few. Customer segmentation is performed offline, shared

with other key functions in the airline, such as the digital

user experience or servicing. A segmentation module must

also consider cases when very little is known about the

customer’s identity (e.g., an anonymous search), deducing

the customer’s travel purpose from the search context. The

calibrated customer segmentation model is loaded into

OMS for online execution.

Dynamic offer construction This module recommends the

most relevant set of products in order to maximize the

conversion of the shopping request at an individual-

ized/customer segment level. Offer construction can be

optimized by recommender systems, which find broad

application outside the airline industry (refer to the

pioneering work by Linden (2003) or the recent textbook

by Aggarwal (2016) for an overview of the field). The

calibration of the models is performed offline and subse-

quently loaded into OMS for online execution. The module

has several applications:

• Rank products from the product catalog, according to

relevance.

• Bundle product sets to control the choice set available

to the customer.

• Propose upsell, cross-sell, and ancillaries within

shopping or re-shopping flows.

• Send unsolicited notifications (e.g., e-mail, mobile, or

check-in kiosk) to customers to propose ancillary

products.
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Dynamic pricing The DP module prices the product offer

that was constructed by the previous module. We will

detail this module in Sect. ‘‘Dynamic pricing of offers.’’

Merchandizing From an RMS perspective, the airline is

indifferent as to whether a customer accepts or rejects an

offer. The assumption is that once a fair market price is set,

the airline is better off rejecting customers who will not pay

the price because other customers will. The reasoning

being that this sort of all-or-nothing course overall results

in higher revenue for the airline. However, in reality, the

customer’s purchasing behavior is neither rational nor

guided by utility maximization. Customers are humans

who can be affected by merchandising techniques.

The purpose of the merchandizing module is to apply

merchandizing techniques, such as framing (the way offers

are presented), priming (influencing by focusing on specific

attributes), defaults (preset options), decoys (adding infe-

rior offers), or positioning (specific position in the ranking)

to affect the customer’s purchasing behavior (Jannach et al.

2010).

Scientific challenges of pricing an offer

Since the 1980s, airlines have relied on RMS to price flight

products. Therefore, it is natural to consider whether RMS

principles could be applied in OMS. Comparing the

objective of OMS against that of RMS (to maximize rev-

enue by pricing flight products), there are two noteworthy

differences. First, while RMS optimizes only the price of

the flight product (actually setting availabilities by booking

class having pre-filed fares), OMS optimizes both con-

structing and pricing of the offer. This is a much more

ambitious undertaking. Second, in contrast to RMS, which

provides the same price to all customers having the same

itinerary and fare product, OMS may differentiate both

products and prices at an individualized level (so-called

personalized pricing). This practice may raise legal and

moral concerns, such as violations of perceived fairness

that would have to be addressed (Reinartz 2002).

Numerous challenges arise in moving toward the

objective of OMS. Solutions differ in terms of their

maturity, which we group into three categories: mature (a

satisfactory solution exists that has been implemented in

RMS); emergent (new ideas or theories exist but solutions

have not been implemented); and immature (challenges

that remain unsolved despite much research effort).

Mature (solved)

a. Single resources The optimization of a single flight leg

dates back to Littlewood (1972), who solved the

optimization problem for two fare classes. Over the

years, this solution has been extended to multiple

classes (Belobaba 1989) and further to dynamic opti-

mization (Lee and Hersh 1993; Lautenbacher and

Stidham 1999).

b. Multiple resources Offers may consume multiple

resources, such as a flight connection or a hotel stay

with multiple nights. The offer, however, must be

accepted or rejected an entity. This means we cannot

independently optimize resources. This challenge was

solved in the early 1990s with the invention of

Network RMS (Smith and Penn 1988; Williamson

1992).

c. Fare family fare products The customer’s reservation

prices for different fare products are correlated. This

means that prices cannot be determined for each fare

product independently but must be determined simul-

taneously. This challenge was solved with the advent

of fare adjustment theory (Fiig et al. 2010, 2011).

d. Mix of different resource types Offers may include a

bundle with a mix of different types of resources, such

as a vacation package that includes a flight product and

a hotel room. To manage this complexity, RM control

has to apply additive bid prices across the different

resource types—a natural extension of bid-price con-

trol (Weber 2001).

e. Third-party content pricing This is not a trivial issue,

owing to complex SPA agreements for interline

connections. For non-flight ancillary products, such

as hotels, insurance, or parking, various commercial

models may apply either an agency model or a

merchant model, each of which has unique revenue

maximization implications. However, the NDC stan-

dard proposes that an interline product is created as a

contract between the offer responsible airline and its

interline partner at the time of shopping (Hoyles 2015).

From the perspective of the offer responsible airline,

third parties can then be viewed as subcontractors and

their prices treated as variable costs.

Emergent (new ideas)

f. Dynamic pricing of flight product The purpose of DP is

to maximize contribution by dynamically pricing flight

products, considering both customer and contextual

information. In this regard, we can think of DP as a

light version of OMS, with a narrow scope limited to

flight products. Simulation studies by Fiig et al. (2015)

have demonstrated that DP, by optimizing the contri-

bution within the shopping session, can significantly

improve revenue performance.

g. Sparse-data issues in demand forecasting In network

RMS, demand forecasting is performed at the traffic

Dynamic pricing of airline offers



flow/point-of-sale/fare product dimensions. At this

level of detail, thick flows (C 10 passengers/year)

account for only about 5% of all flows (Fiig 2007).

Even when only thick flows are considered, data

sparseness poses significant challenges (Gorin 2012;

Fiig et al. 2014; Rauch et al. 2015, 2017). In OMS, the

airline’s offer is expanded to contain multiple prod-

ucts—creating a need for an even finer level of detail

and thereby aggravating the data-sparseness issue.

h. Inconsistent forecast and pricing dimensions For the

airline’s pricing department, the dimensions provided

by demand forecasting are not detailed enough. For

this reason, the pricing department utilizes its own

dimensions by segmenting customers by eligibility and

fare rules. The inconsistency between forecasting and

pricing dimensions lead to erroneous demand and

WTP forecasts. To resolve this issue, as well as the

data-sparseness issue, Rauch et al. (2015, 2017) pro-

posed a groundbreaking idea of disentangling capacity

control from price optimization. We will return to this

concept in the next section.

i. Customer choice models To model individual cus-

tomers’ decision-making processes, discrete choice

models have been found to be superior to traditional

forecasting methodologies (Garrow 2010). Setting

parameters for discrete choice models; however,

requires information not only about the choice selected

(as with traditional forecasting models) but also about

the alternatives not chosen. This information has

traditionally been difficult to obtain for the airlines,

but technological advancements have made this more

accessible now.

j. Dynamic pricing of ancillary products Today, airlines

rely on static prices, filed in advance, for ancillary

products. Prices may differ by market, time to

departure, touch point, or sales channel but are not

optimized. As such, airlines miss a revenue opportu-

nity. In this paper, we show how ancillary products

may be dynamically priced in each shopping session

using price testing in conjunction with machine

learning (see Sect. ‘‘Dynamic pricing of ancillaries’’).

Immature (unsolved)

k. Mixed bundles Products can be sold as pure products (a

la carte), bundles (sold as an entity), or a combination

of both (mixed bundles). This requires internal pricing

consistency, because the customer can select from

among multiple offers containing the same (or similar)

products. For example, the carry-on bag and check-in

bags, sold both a la carte and as a bundle in Fig. 1,

offers six options for the customer (no bags, only

carry-on bag, one check-in bag, two check-in bags,

carry-on bag and one check-in bag, baggage bundle).

The concepts were formulated in a seminal paper by

Adams and Yellen (1976)—yet despite decades of

research, no practical solution has been found.

l. Correlated reservation prices Consumers’ reservation

prices for different products may be correlated. This

means that prices cannot be determined for each

product independently but prices for all correlated

products must be determined simultaneously. This

issue already exists in RMS in fare families and is

compounded when ancillaries are added because of the

multitude of offers that can be constructed. Bockelie

(2017) recently proposed a new dynamic programing

approach that explicitly accounts for ancillary products

and passenger choice behavior in RMS.

m. Pricing of ticket options Airlines may offer derivative

products, such as ticket options (also called ‘‘time to

think’’ or ‘‘fare locks’’) that are equivalent to a call

option. This gives the customer the right—but not the

obligation—to purchase the ticket within a given

window of time (such as 1 week) at a given price.

Pricing ticket options, however, is significantly differ-

ent than pricing financial options. We will not go into

detail here but refer the reader to our forthcoming

paper (Sahin forthcoming).

n. Psychological factors The merchandizing techniques

described above—framing, priming, defaults, decoy,

positioning—influence human behavior. Much

research [notably, Kahneman and Tversky’s develop-

ment of prospect theory (1979)] has been performed on

behavioral economics. However, psychological factors

so far have been difficult to model and consider in a

rigorous scientific way.

Dynamic pricing of offers

We will assume that a product offer has been constructed

and is ready to be priced. For this purpose, we need a

precise definition of the objective of dynamic pricing:

Maximize contribution2 by dynamically pricing the

product offer, considering both customer and contextual

information.

2 Contribution is revenue less variable costs. Revenue Management

often ignores the variable cost because the incremental cost of flying

one additional passenger was small. However, with lower ticket prices

and increasing fuel prices, landing fees, and taxes, this is no longer

true. Further, for third-party content, the cost component cannot be

ignored.

T. Fiig et al.



Assumptions

To progress, we need to introduce some simplifying

assumptions. We will assume the notion of a fair market

price, meaning that all customers in a given segment

receive the same price for the same product offer. We will

ignore the complexities of mixed bundles, correlated

reservation prices, and psychological factors mentioned

above. In the Sect. ‘‘Future research directions,’’ we will

discuss how we may relax these assumptions.

With these simplifying assumptions, the task of dynamic

pricing is essentially reduced to dynamically pricing of

independent offer items: the airline base product and the a

la carte ancillaries. This is described in the next two

sections.

Dynamic pricing of the airline base product/flight

component

When maximizing the contribution for a given shopping

request, we are evaluating the difference between the

contribution of selling the product now and the contribu-

tion of not selling the product (opportunity cost). This

evaluation is made complex by the fact that the opportunity

cost for an airline’s base product is non-zero, arising from

demand pressure on the flight resources.

For this reason, demand forecasts should be detailed

enough—typically, at the levels of traffic flow, fare class,

point of sale, departure day, and days to departure—to

allow airlines to control their flight resources. Even though

this level of detail gives rise to significant data-sparseness

issues, it still is not detailed enough for pricing. Therefore,

the airline’s pricing department utilizes their own dimen-

sions, independent of RMS, on the basis of customer

dimensions such as customer eligibility, minimum/maxi-

mum stay duration, stopover, combinability, round-trip

restrictions, Saturday/Sunday restrictions, and advance-

purchase restrictions, rules and restrictions—that differen-

tiate customers’ WTP. This inconsistency results in RMS

that cannot accurately estimate or represent WTP along the

flight resource dimensions.

To resolve these issues, Rauch et al. (2015, 2017) pro-

posed a groundbreaking idea: disentangle capacity control

from price optimization. Unlike traditional RMS, where a

single forecast is used to forecast both demand (input for

the optimizer that calculate bid prices [BP]) and WTP

(input to the marginal revenue transformation that calculate

fare modifiers [FM]), Rauch et al. propose splitting the

forecast into two completely independent forecasts. A

price-elasticity forecast used for price optimization (Fig. 3,

left box), and a demand forecast used for capacity control

(Fig. 3, right box).

Based on this work, we now generalize the concept of

disentanglement to enable Dynamic Pricing—one of the

objectives of OMS. Capacity control is managed by a

demand forecast that determines volume and network

contribution, which through optimization produces bid

prices (as originally proposed by Rauch et al.). To achieve

price optimization, the price-elasticity forecasts must be

extended to discrete choice models that consider the cus-

tomer’s full choice set (during the shopping request)—not

just different booking classes of the traffic flow, as con-

sidered by RMS. In addition, the availability computation

considered in RMS should be extended to take the general

choice probabilities into account (see below).

Calibration of choice models

To model an individual customer’s decision-making pro-

cess, we apply discrete choice models. The data set for

calibrating the choice models is constructed by matching

bookings (from MIDT and PNRs from the airline’s reser-

vation system) with the corresponding shopping context—a

comprehensive list of alternatives available to the customer

at time of booking. This provides a data set in which we

have, for each booked customer n, information about the

alternatives i in their choice set i 2 Cn, including prices pi
and non-price attributes xni (vector notation). Typical non-

price attributes could be airline preference, time of day

preference, and schedule quality (e.g., number of stops or

trip duration).

In practice, not all bookings can be traced and set into

their shopping context. In addition, the choice set may be

incomplete, because GDS-based search transactions do not

always capture information from all airlines (some airlines

do not or only partially participate in GDS channels); nor
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do they capture information from other modes of trans-

portation (e.g., rail or bus) that may be available to the

customer.

Despite these limitations, however, we are now in a

position to calibrate the selected choice model to obtain

parameter estimates b and the choice probability

P ijpi; xni; bð Þ. The choice model parameters b typically are

linearly coupled to the attributes through the utility and as

such interpreted as sensitivity parameters.

In practice, the models that have attracted the most

attention are multinomial logit (MNL) and nested logit

(NL) models. These models lead to a closed-form expres-

sion for the choice probability, which greatly simplifies

both interpretation and computation.

Dynamic pricing

The objective of DP is to determine the prices that maxi-

mize the contribution of the offer. Consider the airline’s

base product only, for customer n, with a given itinerary

i 2 Cn. We can determine the optimal price p�i by

p�i ¼ Argmax
pi

ðpi � BPÞP ijpi; xni; bð Þ½ �;

where BP denotes the origin-and-destination (O&D) bid

price, obtained as the output of the capacity control in

Fig. 3. It should be noted that, unlike the filed fares in

RMS, the optimal price determined by DP is a continuous

value.

Further, if we reduce the choice set, as assumed by

RMS, to include only the different booking classes of a

given traffic flow and limit ourselves to the discrete pre-

filed fares f, the availability control decision in RMS is

recovered. To see this, consider for simplicity a fenceless

fare structure with an exponential sell-up probability

PRMS fð Þ ¼ e�bf , as seen by RMS. By inserting PRMSðf Þ as
the choice probability in the DP equation above, the opti-

mal RMS fare f � becomes:

f � ¼ Argmax
f

f � BPð ÞPRMS fð Þ
� �

¼ BPþ 1=b;

where the term 1=b can be identified as the fare modifier.

This expression is identical to RMS’ bid-price acceptance

criterion: accept request with f � f � and reject otherwise.

Dynamic pricing of ancillaries

For discussion purposes, we will assume that there is an

unlimited supply of a la carte ancillary products. This

assumption is often justified, although not always (there is

limited capacity of exit seats or cabin overhead space).

Our objective is to maximize the contribution for a

given customer request, which, as before, is done by

evaluating the difference between the contribution of

selling the ancillary now and the contribution of not selling

the ancillary (the opportunity cost). Unlike before, how-

ever, the opportunity cost for ancillaries is zero because of

our assumptions of unlimited supply (and uncorrelated

reservation prices). This means we no longer have to per-

form demand forecasting (or optimization). Without this

constraint, we are no longer limited to the traditional

forecast dimensions tied to the flight resources and are free

to use any set of attributes. Below, we provide a list, by no

means exhaustive, of possible attributes that could be used:

• Flight resource dimensions: O&D market, departure

day and time, days to departure, fare product.

• Point of sale (POS).

• Booking information: booking day, weekday, booking

hour.

• Trip information: total travel time, number of connec-

tions, return travel date.

• Time zones: origin, destination time zones.

• Price: average price paid per passenger for the flight

product.

• Persona: customer segment, travel purpose.

• Number of passengers in party (NIP).

• Weather: season, weather forecast at destination.

• Holidays: days to Thanksgiving, Christmas, Easter, etc.

Letting xn denote the attributes of the customer request

(e.g., among those in the list above) and Pðp; xn; bÞ denote
the purchase probability for the considered ancillary at

price p, then one approach could be to maximize directly

(as before) the contribution: p� ¼ Argmaxp p � Pðp; xn; bÞ½ �.
However, this would require us to calibrate (that is, esti-

mate the b parameters) of Pðp; xn; bÞ. A limitation of this

approach is that a calibration of the purchase probability

using traditional statistical methods requires low dimen-

sionality of the attributes, such as dimðxnÞ� 5, in order to

collect sufficient data to perform meaningful statistical

analysis.

Instead, we can directly apply A/B testing in conjunc-

tion with Machine Learning (ML). These techniques are

able to handle high-dimensional data and can extract the

significant pricing attributes without having to model cus-

tomer choice. Typically, in our tests, the resulting signifi-

cant attributes have dimðxnÞ � 10:

In the remaining part of this section, we explain the

principles behind Navitaire’s product, Ancillary Price

Optimization (APO) that applies this methodology.

Several low-cost and hybrid carriers across Europe, Asia,

and North and South America use APO in production to

experiment with dynamic pricing of ancillaries. The airline

usually starts with bags or seats because of the higher sales

volume and conversion rates that allow us to obtain the
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required data more quickly. But the principles apply gener-

ally, and so APO is also used to price other ancillary prod-

ucts, such as fast-track security, and bundles of ancillaries.

APO is conducted in five sequential steps (Coverston

2016), which we will illustrate by way of example.

1. Configure the experimentsDefines the ancillary product;

the target population (channel, market, customer seg-

ment, etc.); the test duration (e.g., 3 months); the split

between traffic getting control price versus traffic for

price testing; and specifications of the price point to be

tested. In this example, 92%of traffic receives the control

price (no treatment, price point 2), while the remaining

8% is randomly split between price point 1 or price point

3 (Fig. 4). The target percentage selected for price testing

(in this example, 8%), is based on a projection of the time

required to gather the data. The projection depends on

conversion rates for flights and the ancillaries.

2. Run the experiment The data collected from this

experiment include the attributes of the request, price

point, and outcome (purchase/no purchase). Summary

statistics for the pricing experiment in this example are

shown at the bottom of Fig. 4. The numbers above the

price point denote the probability PðpiÞ of the treat-

ment, while numbers below denote the purchase

probability P purchasejpið Þ and the expected revenue

ri ¼ P purchasejpið Þpi, given the treatment, respec-

tively. It can be seen that the price point that provides

the highest expected revenue is p2.

3. Analyze and model Conduct an offline analysis and

model selection based on data gathered during exper-

imentation. Significant pricing attributes are identified

and a model is selected among standard methods (e.g.,

regression, decision trees, random forest, neural net-

works) based on its implications for marketing and

brand in addition to the revenue uplift (see below).

Figure 5 shows the optimized model with three

decision trees—one for each price point, although

only the decision tree for p3 is shown. Summary

statistics can be computed to assess the performance of

the optimized model. From the decision tree, we can

compute the average purchase probability by the

weighted average over the purchase probabilities of

the terminal nodes. For the decision tree p3; we have

average purchase probability P ¼ 3:2% and average

expected revenue r = 4.17.

4. Deploy pricing model Provided that the uplift analysis

(see below) shows sufficient benefit, the model is

deployed to production. Continued experimentation is

normally preferred; for instance, our example in Fig. 4

could be extended such that 92% of traffic is again

allocated to the control group (using the existing

model) while the remaining 8% is directed toward new

experimentation. Figure 5 illustrates real-time execu-

tion, using our example. Consider a customer; travel-

ing alone (NIP = 1), with point-of-sale Sweden

(POS = SE). If we propose him with the price point

p3 ¼ 130, he would end up with expected revenue

r ¼ 3:12. Similar calculations are performed for price

points, p1 and p2: The expected revenue of all three

price points are compared and the price point with the

highest expected revenue is proposed to the customer.

5. Monitor This step provides statistics to verify that the

optimized pricing model behaves according to expec-

tations. The cycle is repeated on a continuous basis as

new pricing experiments continue even after the

optimized model is deployed.

Low
p1=70

Control
P2=100

High
p3=130

4% 92% 4%

Customers

P1=4.9%

r1=3.43

P2=3.7%

r2=3.70

P3=2.6%

r3=3.38

Fig. 4 Randomized price experiment. The numbers above the price

point denote the probability PðpiÞ of the treatment, while numbers

below denote the purchase probability P purchasejpið Þ and the

expected revenue, ri ¼ P purchasejpið Þpi, given the treatment

POS=DK POS<>DK

DOW=1-5 DOW=6,7 NIP>1 NIP=1

50% 20% 10% 20%

P=2.8%
r=3.64

P=5.2%
r=6,76

P=2.9%
r=3.77

P=2.4%
r=3.12

p1=70 P2=100 p3=130

Customers

20% 50% 30%

w. Avg. P=3.2%
w. Avg. r=4.17

P1=4.7%
r1=3.29

P1=4.5%
r2=4.50

P3=3.2%
r3=4.17

NIP=1
POS=SE

Fig. 5 Optimized model, applied in real time. Point of sale (POS)

and number in party (NIP) are shown as attributes in the decision tree.

The numbers above the price point denote the probability PðpiÞ of the
treatment, while numbers below denote the purchase probability

P purchasejpið Þ and the expected revenue ri ¼ P pið Þpi, given the

treatment
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Expected uplift

To assess the effect of the pricing experiment, we apply

uplift models that quantify this effect by measuring the

difference in conditional purchase probability between the

treatment and non-treatment (control) customers (Radcliffe

2007). However, depending on the objective (e.g., revenue

maximization), the conditional probabilities will in general

be weighted. In our example case, we would like to com-

pute the expected revenue uplift:

u ¼
P3

i¼1 pi � P purchasejpið ÞPðpiÞ � pc � P purchasejpcð Þ
pc � P purchasejpcð Þ

" #

To provide the most conservative uplift estimate, we

choose as a control the price point that provides the highest

revenue among the three price points. In the example case,

(Fig. 4), this is obtained for pc ¼ p2, with revenue

r2 ¼ 3:7. Performing the uplift computation yields

u ¼ 20% � 3:29þ 50% � 4:5þ 30% � 4:17� 3:7

3:7
¼ 12:4%

While we have illustrated the methodology for an

example case, the uplift is of correct order of magnitude for

real airline applications. Hence, this approach provides

substantial revenue potential versus the current practice of

static pricing.

A distribution landscape in motion

Looking ahead, one of the biggest challenges for deploying

dynamic pricing of airline offers is the management of

volume and the complexity of worldwide travel distribu-

tion. Today, GDSs are handling high volumes of shopping

transactions with multi-airline aggregation, though for

simpler airline offers and with more homogeneous pricing

and fare definitions. In this section, we will briefly describe

current industry initiatives, then review characteristics of

the distribution channels and their impact on airlines’

OMS.

Industry initiatives enabling dynamic pricing

The design of a new distribution standard, known as IATA

NDC, was initiated several years ago. This standard is

intended to facilitate the connection between third-party

retailers and an airline’s offer and order management sys-

tems, with a goal of avoiding prohibitive bilateral inte-

gration costs between each airline and third-party

distribution channel.

More importantly, the standards also seek to give airli-

nes full control of the offer generation process, including

access to persona and contextual information and ability to

dynamically construct and price offers. With NDC, airlines

avoid the two-step process of fare filing, and availability

computation and distribution, which has prevailed for

decades (Hoyles 2015; Wilson and Touraine 2016).

Figure 6 illustrates where the airline OMS fits in this

new distribution landscape.

According to IATA (IATA.org), there are now more

than 40 airlines NDC-capable with a certification for offer

and order management (Level 3); more than 30 companies

providing those IT capabilities to airlines; and already a

few aggregators and resellers capable of managing offers

and orders using these new standards. Most airlines cur-

rently limit the deployment to direct connect to specific

distribution partners, such as corporate customers, online

travel agencies (OTAs), travel management companies

(TMC), or other travel agencies (TAs).

Few leading airlines are now taking first steps toward a

multi-channel retailing strategy focusing on an extended

offering (IATA 2018). However, there is no known

deployment of dynamic pricing for flight products using

NDC to date.

In parallel, ATPCO has initiated a working group

(Ratliff, 2017) focusing on dynamic pricing engine (DPE)

deployment, which would re-use the legacy GDSs and

airline CRSs pricing engines adding price adjustments. The

group’s objective is to reduce time to market compared

with a full NDC and OMS deployment. Pilot testing to

refine the design of a DPE is in progress with providers.

Distribution channels and their interactions

with OMS

Let us now describe the different distribution channels and

their main characteristics that could impact an airline’s

OMS.

The airlines’ own digital touchpoints (e.g., website,

mobile application) are critical to the customer experience

and loyalty; those are already directly connected to the

airline’s OMS via enriched application programing inter-

faces (API), allowing for innovation and personalization of

the offer. By controlling how offers are presented (e.g.,

through graphics, photography, or descriptions), airlines

can also apply retailing techniques to increase conversion

and upsell.

In reality, before reaching an airline’s website, most

customers spend time on the Internet’s giants web inter-

faces, social media, and search engines (GAFA, shorthand

for Google–Amazon–Facebook–Apple; and BAT, short-

hand for Baidu–Alibaba–Tencent) to start their travel

inspiration journey. To reach potential customers and cre-

ate awareness about their offers, airlines need solutions for

distributing their offers through these gatekeepers, to
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which airlines pay advertising or referral fees. This cus-

tomer acquisition step is not the same as a standard shop-

ping step when a customer is actively searching for a travel

product. As a consequence, these digital marketing chan-

nels require specific solutions coming from the airline

OMS, to construct and promote the most relevant offers.

Meta-searchers (such as Kayak, Momondo, and

Cheapflights) have a specific role in customer acquisition,

as they answer a customer need to compare offers among

all travel retailers. Meta-searchers generate a huge volume

of search traffic that requires an instant answer, putting

significant stress on airlines and aggregators’ IT systems

and without any guarantee of the customer completing a

booking. As the customer’s conversion is sometimes

impacted by redirection to another website, meta-searchers

also propose including a ‘‘meta-booking’’ capability in

their shopping tools, while directly connecting to retailers

in the back for order fulfillment (for instance, through

NDC).

Third-party travel retailers (TAs, OTAs, and TMCs)

account for the majority of bookings on full-service carri-

ers. These retailers also need aggregated information from

all airlines to offer a variety of choices to their customers.

While these retailers typically rely on the GDSs to provide

this service, they can also implement a direct connection to

some airlines, for instance through the NDC standard, as

described earlier. Of note, they also have their own

advanced retailing techniques, thus controlling which

itineraries to display and in which order, based on com-

missions, performance-specific incentives, and service fees

(Smith et al. 2007).

Technological advancement

As online search engines generate thousands of search

transactions per booking, an IT system needs to be extre-

mely cost-effective, scalable, provide real-time dynamic

offer construction and dynamic pricing while providing

consistency across all distribution channels. These needs

have to align with the airline’s and distribution partners

business priorities and the expected return on investment.

Technology will help to accomplish these needs. Cloud

infrastructure and real-time worldwide data synchroniza-

tion allow data centers across continents to host and run a

single source of content, accessible to any distribution

channel, while continuously being under airline control.

How does this work? The IT system managing the air-

line’s OMS (including algorithms and data), is replicated in

real time on a platform that uses a virtualized infrastruc-

ture. This platform can be deployed in different data cen-

ters, providing unprecedented scalability and resiliency

while improving network response time because of the

physical proximity to the airlines’ consumers. Further,

cloud infrastructure providers make significant investments

in security, automation, and cost control, providing the

tools necessary to optimize performance and processing

costs.

Future research directions

While many pricing challenges, as mentioned in this paper,

have so far proven intractable from a traditional modeling

perspective, the new paradigm in science is ML. Analo-

gous to the methodology explained for Navitaire’s APO,

we may apply price experimentation in the production

Customer

On-line

Distribution Revenue OptimizationMarket

Real-time Batch

entrants

Aggregators
platforms

Advertise-
ments etc.

Off-
SHOP

OFFER

BOOK

ORDER

(Figure1)

Order

System

• Data collect.
• Cust. segm.
• Recommend
• Forecasting
• Optimization

Fig. 6 Customer shopping request in an agent’s front-office system is

passed through the aggregator and to the airline’s OMS. The airline

creates the offer that is returned to the customer. Each offer is

individually tagged with an offer ID that subsequently is used if the

customer accepts the offer (‘‘book’’), in which case an order is created
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system in conjunction with ML to optimize relevant key

performance indicators, such as revenue uplift or conver-

sion rates.

As direction for future research, we propose applying

ML techniques to address the pricing complexities of

mixed bundles, correlated reservation prices, and psycho-

logical factors.

Conclusion

We have presented our vision for an airline offer man-

agement system that enables airlines to dynamically con-

struct and dynamically price offers. Fulfilling this vision is

not possible today, given the limitations of legacy RM and

distribution systems.

We explain why existing RM techniques are inadequate

for pricing general offers and provide insight into new

emergent techniques. We explain how these techniques can

be employed to perform dynamic pricing of both the air-

line’s base product and ancillary products.

In light of NDC, we discuss the transformation of the

distribution landscape and its implications. The digital

revolution that has penetrated many industries will also

affect travel distribution. New entrants, Internet giants, and

meta-searchers change customers’ expectations to instant,

relevant, and personalized offers—delivered consistently

across all channels and devices. Finally, we discuss how

technological advancements in cloud infrastructure and

real-time worldwide data synchronization can enable

deployment of Dynamic Pricing of the airline offers.
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