
 GraphQL for NDC | June 20191

IN
FOCUS

Why is this important?
The NDC (and ONE Order) XML standards consist of sche-
mas describing messages. These messages work in pairs
(request/response), for specific actions, e.g.:
• Shopping (AirShoppingRQ/AirShoppingRS)
• Booking (OrderCreateRQ/OrderViewRS)

The use of a full-featured language such as XML in a pro-
cess-driven world makes it possible to enforce complex
business requirements.

However, this comes at a price. In some situations, devel-
opers may prefer to work with simpler solutions, even if the
associated functions are limited. In that regard, GraphQL
can be an option.

GraphQL is a specification of a query and manipulation lan-
guage for APIs, initially developed by Facebook for internal
use in 2012, and then made public in 2015. GitHub API v4 is
another example of a major GraphQL API.

The aim of GraphQL is to provide a simple, efficient, and
straightforward interface, simplifying the development
work for both the API provider and the API consumer.

It can positively impact the API performance as well as the
developer experience. This is even more relevant for new-
comers trying to use the API for the first time, for instance
in hackathons (programming and business ideas contests).

Zoom into the topic
The response’s structure is in the request

The main concept of GraphQL is that the client, in the re-
quest, provides the structure of the expected response.
This solves two issues at once:
• All required information is retrieved in a single

message (no under-fetching, so no need for several
messages in a row)

• No unnecessary information is included in the
response (no over-fetching, so no superfluous data
transmitted)

Compared to other APIs architectures, the number of mes-
sages and/or their size can be reduced.

An example of that is shown in the screenshot below: the re-
sponse (right) looks exactly like the request (top-left); which
simplifies the implementation for the client.

How a GraphQL API is designed

A GraphQL API (on the server side) has two main components:
• A schema describing the possible queries (using the

Schema Definition Language)
• Resolvers, i.e. functions that process the client queries,

relying on internal databases and/or other APIs.

This structure helps decorrelating the front-end and the
back-end development.

For the client, the schema and the native introspection
functionality (i.e. the ability to directly explore this schema)
facilitates the creation of calls to the GraphQL API. Available
requests (queries – fetching data – or mutations – modifying
data) are entirely described, as is the structure of the re-
sponse that can be requested. Because the client describes
the expected response in the request, the actual response
is fully predictable.

 GRAPHQL FOR NDC

 JUNE 2019

Before reading this InFocus,
you should already be familiar with the following
InFocus document:“How APIs can help airlines”,

also available on iata.org/ndc.

Architecture of a GraphQL API

Client

type Passenger {
...
}

type Flight {
...
}

type Service {
...
}

Resolvers

GraphQL API
Server side

Other APIs

Databases

http://www.iata.org/ndc

 GraphQL for NDC | June 20192

IN FOCUS
 GRAPHQL FOR NDC

Industry state of play
The GraphQL Schema Definition Language is not descrip-
tive enough to represent the full complexity of XSDs (XML
schemas) currently used for NDC and ONE Order. However,
it is possible to design and implement GraphQL APIs provid-
ing a subset of the NDC/ONE Order functionalities.

A study of GraphQL (and other paradigms and data formats
for APIs) is available on airtechzone.iata.org. A GraphQL API
prototype has also been designed and implemented: it is an
additional layer on top of the IATA NDC sandboxes, provid-

ing basic shopping and booking services. The source code
is available on github.com/airtechzone/ndc-graphql-api.

GraphQL cannot be a complete solution for NDC and ONE
Order as they are today, because of the complex business
requirements that need to be enforced. However, a majority
of APIs with a simpler logic can use this technology. Graph-
QL can facilitate vAPI development and its usage, as well as
contribute to their efficiency.

Example from the NDC GraphQL API prototype

https://github.com/airtechzone/ndc-graphql-api

