

# Forecasting & Advance Analytics for Engine Maintenance Cost Control

Kristen Seals Delta Air Lines



### Advancing Analytics



Difficulty



### Breaking Down Engine Maintenance Costs

#### Volumes

How many assets (engines, modules or components) will require maintenance? How many sub-components (piece parts) will require repair or replacement (scrap)?

#### Dinventory

How much buffer inventory is needed to support the operation? What Service Level is needed for my business?

#### 🕥 Rates

What will it cost to repair or replace the parts forecasted as total demand?

### Material Supply & Demand Profile Development

#### Analytics can be used to Forecast Volumes, Inventory and Rates

Breaking down demand to the piece part level will allow for optimization of supply

#### Demand Profile

### Forecasting demand, both at the engine (or asset) level all the way down to the piece parts

- Engine Removal Forecasting
- Engine Workscope Type Forecasting
- Piece Part Scrap Demand
- Scrap Variability



#### Buffer & Replenishment

Calculating Buffer and Replenishment needs based on Little's Law and Theory of Constraints

- Engine TAT Requirements
- Historical Piece Part TAT
- Forecasted TAT Variability



#### Supply Profile

### Advanced demand and buffer forecasting allows for optimization of supply profile

Current Inventory

- Material On Order
- Used Material Availability
- Part-Out Material Availability
- Unserviceable Material Availability
- Repair Development Opportunities



### **Demand Forecasting**

- Forecasting removals (planned + UER) at the ESN or removal attribute level allows for probabilistic modeling at the piece part level
- Expanding piece part forecasting from Empirical Forecasting to include probabilistic models can greatly improve accuracy



### Feature Forecasting

- Feature based scrap forecasting allows for ESN specific modeling based on engine, module and piece part characteristics (actual or projected) at time of removal
- Model features can be forecast months and even years in advance to enable extended production and material demand forecasts



#### Part #1 Feature Forecast

| Expected Removal Date | 04/2026 |
|-----------------------|---------|
| EGTM                  | 16      |
| Engine TSO            | 20k     |
| HPT TSO               | 12k     |
| HPC TSO               | 7.6k    |
|                       |         |

### Buffer and Replenishment

- User-desired service levels provide buffer inventory requirements to hedge against forecast error and lead time variability
- Order Up To Levels (OUTLs) reconcile predicted demand with actual demand to smooth inventory position and keep service levels consistent





Total Buffer Stock = 
$$Z * \sqrt{\left(\frac{PC}{T_1} * \sigma_D^2\right) + \left(\sigma_{LT} + D_{avg}\right)^2}$$

### Total Replenishment

- Desired service levels are part-specific. Setting service levels to maximize engine A0 under budget constraints is an optimization exercise
- Accurate inventory levels and up-to-date lead/TAT distributions are critical to accurate forecasting



Acceptable levels of risk remain strategic business decisions and risk is managed through the desired service levels.



### Supply Profile

- Accurate demand forecasting and timing allows for strategic sourcing of supply
- Replacement cost for scrap parts can be dramatically reduced through advanced purchasing and efficient use of existing materials



### **Reducing Piece Part Volumes**

- Historically, "cost buckets" are developed to derive Fleet Management Plans (FMPs) and shop Minimum Build Standards
- Optimization modeling can be used to move from these single event maintenance optimization technique to full engine life cycle optimization
- Enhance modeling using ESN unique characteristics, performance entitlement and reliability



#### Choosing the Right Analytic Capabilities

Selecting the RIGHT Analytics to invest in is as important as the model development itself



#### Understand Your Data

Data quality and availability is often the greatest barrier of entry for advanced analytics. Know the current state of your data and what investment must be made.



#### Know your Value Objectives

Understanding your primary objectives and target use cases will streamline your journey to value creation.



#### Understand Ongoing Investments

Most advanced models require some level of sustainment. What will that be and how can you support it?



## Choosing the Right Analytic Capabilities

Building suite of analytic tools to support CASM Reduction



Machine learning models require retraining and monitoring

Human intervention will be constantly required to update, expand and retrain models. Changes to your fleet, operation or reliability requirements will drive perpetual updates.



## Questions?

5