

1 Object Triple Mapping

Object Triple Mapping

Bridging Semantic Web and object-

oriented programming
The use of Semantic Web and ontologies in creating smart applications has drastically increased during

the recent years due to the high potential in allowing machines to reason on provided semantics.

Providing powerful tools that can improve the development of applications based on ontologies can

accelerate the adoption of Semantic Web. For this purpose, many tools such as ontology editors, ontology

reasoners, triple store frameworks and object triple mapping systems have been developed.

This article introduces the concept of object triple mapping, which essentially consists of a bridge

between RDF/OWL and object-oriented programming.

What is object-oriented

programming?
Object-oriented programming (OOP) is a paradigm

for software development, based on the concept of

objects, which can contain data, in the form

of fields (often known as attributes or properties),

and code, in the form of procedures (often known

as methods).

The fundamental characteristics of OOP are:

1. Inheritance – Parent to child relationships;

2. Polymorphism – Overloading and overriding

class members;

3. Encapsulation – Hiding data behind

operations;

4. Abstraction – Reveal mechanisms that are

only relevant for the use of other objects.

OOP focuses on the objects that developers want

to manipulate rather than the logic required to

manipulate them. OOP is well-suited

for programs that are large, complex and need

constant updates or maintenance. The most

popular OOP languages include Java, Python and

C++.

In the same way as in the creation of ontologies, in

OOP a developer needs to firstly identify all the

objects that they want to manipulate as well as the

relationships between them (process known as

data modelling).

What Semantic Web and OOP

have in common?
Semantic Web shares a few major characteristics

with OOP:

▪ Semantic Web has classes for defining data

concepts;

▪ Semantic Web has instances for actual data

values;

▪ Inheritance among classes is supported;

▪ Strongly typed data types are supported

(string, integer, etc.);

▪ Whole/part relationships are supported.

Whole/part relationships are when one class

represents the whole object and other

classes represent parts. The whole acts as a

container for the parts.

Aside from these features, Semantic Web is more

rigorous and formal, by specifying extra information

such as the allowed relations between classes and

their instances.

https://www.iata.org/contentassets/a1b5532e38bf4d6284c4bf4760646d4e/one_record_tech_insight_the_power_of_ontologies.pdf
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://www.iata.org/contentassets/a1b5532e38bf4d6284c4bf4760646d4e/tech_insight_crafting_ontologies.pdf
https://www.w3computing.com/systemsanalysis/enhancing-class-diagrams/

2 Object Triple Mapping

How OOP and Semantic Web

differ?
There are several discrepancies between OOP and

RDF/OWL, as defined by the Software Engineering

Task Force (SETF):

▪ Classes in OOP are regarded not as sets to

which instances belong, but as types for

instances;

▪ Each instance in OOP belongs to one class

as its type’s instance;

▪ Instances in OOP cannot change their type at

runtime;

▪ The list of classes in OOP must be fully

known at runtime and it cannot change after

that;

▪ There is no reasoner in OOP that can be used

for consistency checking at runtime;

▪ Properties in OOP are defined locally at the

class level and not as stand-alone entities;

▪ Instances in OOP cannot have arbitrary

values for any property without the definition

in its class, and no domain constraint.

Challenges for technical experts

working with Semantic Web
The most challenging concern for a software

developer who is trying to model RDF or OWL is to

unlearn the OOP acquired practices.

For programmers with OOP background it is quite

comfortable to model OWL classes, but they need

to unlearn the idea that classes are just static

datatype for objects at runtime and start

considering classes as dynamic sets of instances

that may change membership at any time during

runtime.

Database experts are generally more comfortable

with the notion of OWL classes as sets, but they

still need to resist the appeal of normalizing the

data model using primary and foreign keys and

focus on modelling objects that accurately

represent the information model.

Small example below from JOPA: Accessing

Ontologies in an Object-oriented way paper:

“(…), an ontology specifies that each Person has a

name. Due to the open world assumption, the

ontology is consistent even if a particular Person

does not have recorded his/her name. However, a

genealogical application accessing the ontology

needs the name to be known, which causes the

application to crash whenever it receives

(consistent, but application–incompatible) data

from an ontological source, specifying a Person

without a name.”

Introducing Object Triple Mapping
Object triple mapping (OTM) was designed for

helping to develop ontology-based applications

through the object-oriented programming

paradigm.

OTMs map RDF triples into data objects, enabling

developers to handle RDF triples as objects in

object-oriented applications. In the same manner,

developers of relational databases have been using

object-relational mapping (ORM) systems (e.g. DQL

or Hibernate) to map relational databases into

objects.

OTM with JOPA
There are several libraries for multiple

programming languages that have been introduced

for mapping RDF model to the object model.

One that was particularly tested by the ONE Record

team (see code on Github) is JOPA (Java OWL

Persistence API).

http://www-kasm.nii.ac.jp/papers/takeda/06/koide06aswc.pdf
https://www.w3.org/2001/sw/BestPractices/SE/
https://www.w3.org/2001/sw/BestPractices/SE/
https://www.scitepress.org/Papers/2015/54003/54003.pdf
https://www.scitepress.org/Papers/2015/54003/54003.pdf
http://semantic-web-journal.net/system/files/swj2057.pdf
https://github.com/IATA-Cargo/one-record-server-java

3 Object Triple Mapping

JOPA and related approaches

JOPA is a domain-specific library which express

the domain model in the form of object classes, and

their properties (attributes or relationships). JOPA

automatically maps the notions from the object-

oriented realm to the semantic data model and vice

versa.

JOPA compiles integrity constraints into a set of

Java annotations that keep their semantics at the

object level. This allows easy validation of

restrictions such as cardinality, as well as domains

and ranges of annotations, data or object

properties.

The figure below illustrates a simple Java class

generated from an ontology. We can recognize in

the annotations the same language used in the

creation of ontologies, such as DataProperty,

ObjectProperty, etc.

Generated Java class using JOPA

Conclusion
Nowadays, a huge amount of existing applications

is coded with object-oriented programming

languages such as Java or Python.

A key point for accelerating the adoption of

Semantic Web is the creation and usage of tools

such as object triple mapping frameworks which

translate RDF/OWL to object-oriented models. This

kind of tools are crucial as they save hours of

development and maintenance and translate

ontologies in languages that are more familiar to

developers. Many OTM libraries exist, however

these libraries differ a lot in their capabilities and

there is still a lot of work to be done in this area.

More info at https://www.iata.org/one-record/.

https://github.com/kbss-cvut/jopa
https://www.iata.org/one-record/

