IATA

AVIATION

DATA

SYMPOSIUM

ATHENS, GREECE 25-27 JUNE 2019

SAFETY & FLIGHT OPERATIONS

Opening Remarks

Chris Markou, Head Operational Cost Management, IATA

Skywise & Predictive Maintenance by aiming to be the data platform used by all major aviation players

Frederic Sutter, Digital Transformation Leader, Airbus

AIRBUS

Skywise: a collaborative ecosystem across the aviation

industry

skywise.

Frederic SUTTER

Digital Transformation Leader, Airbus

Eliminating industry wide friction costs can generate significant value

Poor ops data feedback for product def. / improvement

Limited data sharing on issue identification / root cause analysis

No real time optim. of routes / fleet / crew

No bench-marking vs. best in class players

Data is THE foundation

Solving the data problem through integration, first

From static, heterogeneous systems...

Extraction

Integration

...To extracted, curated and actionable data

Skywise: Delivering value inside Airbus

A350 maturity acceleration

A350/A320 quality

A350/A320 production

Bill of Materials

Time to get a fix

Industrial processes monitoring

Supplier monitoring portal

Predictive maintenance

Product Control Tower

Smart Repair Wizard

Procure to Pay

Skywise: Delivering value for airlines

Defect management

Fleet wide reliability

Root cause analysis

Digital Services

Warranty claims automation

Skywise for Supplier – RCA collaborative environment use case

Airbus only

Issue data collection and selection

Share anonymized dossier with supplier

Supplier anonymized issue dossier

Event analysis based on anonymised time series

Airbus Supplier

Issue key drivers identification

Define test conditions to reproduce the issue

Skywise: Delivering value for suppliers

Quality

With Skywise Quality, I can now reproduce the failures exactly as they occurred in the Airbus production line, with a full understanding of the root cause and how to eradicate it

QUALITY ENGINEER AT SUPPLIER

Helps quality engineers quickly contain sudden quality issues and eradicate recurring defects in the long term

Skywise Partners

Unleashing the potential of data. Together.

We believe in opening the Skywise platform to seamlessly integrate cutting-edge developers with aerospace data will create even greater value.

With our partners, we provide collaborative power that unleashes potential and increases utility of data to create impactful, high quality solutions with a shorter time to market.

The program is dedicated to everyone in the aerospace ecosystem who wants to make the best possible use of data.

Skywise Today

skywise.

80+

Airlines

6500+

Airc raft

35M+

Maintenance Actions

5+

Skywise Partners

10+

Suppliers

10000+

Unique Monthly Users

120+

Systems Integrated

AIRBUS

Building an open data platform for aviation

AIRLINES

S ervices for improved flight operations, maintenance, asset utilisation, disruption mgmt.

LESSORS

Asset utilisation optimisation

SUPPLIERS

Predictive maintenance Improved component design

MROs

Optimised issue identification with in-flight data

AIRPORTS

Services for optimised air / ground traffic mgmt.

Air Traffic Control

Real time visibility on flight status

AIRWORTHINESS

Accelerated certification process

THIRD PARTIES DEVELOPERS

Market for value-added services

AIRBUS INTERNAL

Higher operations efficiency and productivity Improved aircraft design

Skywise: A robust and sound approach to data

- · Airlines own and control their data
- Shared value participating in Skywise and sharing data is a choice
- . Airlines cannot see each others' data but benefit from anonymised aggregated data
- Skywise supports the full breadth of airline operations "private area" can host operation sensitive or non-Airbus multi-fleet data
- Open by design to airlines and 3rd party Developers through APIs
- First Skywise Partners announced in PAS 2019
- Built-in data governance and cyber security

Skywise User Testimony

Myths v/s Facts

In aviation, digital is challenging to apply and to benefit from

WRONG! We have achieved 2-digit improvements in over 60 implementations

Our current business models will be difficult to challenge and will ultimately prevail

WRONG! New paradigms such as 'zero aircraft on ground' (Zero-AOG) will emerge

Data science creates business value by itself

WRONG! Only the right blend of digital capabilities and domain knowledge, with specific process, delivers industrial value creating use cases

EXCLUSIVE Data OWNERSHIP is the path to value

wrong! SHARING data creates common value, enabled by technology with no compromises on security

skywise. The beating heart of aviation

Predictive Maintenance Already Providing Benefits to Operators?

Rodolphe Parisot, VP Digital & Innovation, Air France Industries KLM Engineering & Maintenance

PREDICTIVE MAINTENANCE ALREADY PROVIDING BENEFITS TO OPERATORS?

Rodolphe Parisot – VP Digital & Innovations

IATA Aviation Data Symposium 2019

BIG DATA: OPTIMIZE MAINTENANCE OPS

THE PROGRESSION OF ANALYTICS

BIG DATA: OPTIMIZE MAINTENANCE OPS

THE PROGRESSION OF ANALYTICS

OPERATION NEEDS VS. MARKET OFFER

WHY DOES AIR FRANCE KLM DEVELOP ITS OWN PRODUCTS?

OEM **AHM** tools: advanced users (pilot airline for development)

- Agnostic solutions?
- Predictive capabilities?
- Focus enough on operator's concerns?

ECM tools

- Agnostic solutions?
- Advanced analytics?
- Customization of algorythms?

APU condition Monitoring tools

- ?
- Agnostic solutions?
- Advanced analytics?

Remaining **Operational Disruptions**

- Predict failures before occurrence (MMSG)
- Use of Full Flight Data (x10⁷ more data!)
- Business value? Feasability?

WHY PREDICTIVE MAINTENANCE?

ADDRESSING OPERATIONAL CONSTRAINTS AT FIRST

Beyond Value

Goals

- Curative / preventive limitation
- Agnosticity
- No existing solution available
- Need of (more) anticipation
- Focus on multiple systems ranked by operational impact
- Use of data generated by new and legacy aircraft

- Improve operations / aircraft dispatch
- Limit technical delays
- Avoid flight cancellations
- Reduce unscheduled maintenance
- Prevent NFF by more accurate monitoring of system performance with full flight data
- Reduce troubleshooting duration by targeting the exact failing parts
- Contribute to Operations Integrity
- Improve stock management

PREDICTIVE MAINTENANCE: MORE THAN YOU ALREADY KNOW

PROGNOS PREDICTS AND AVOIDS FAILURES

Prognos® for AIRCRAFT Prognos® for ENGINE

Prognos® for APU

PROGNOS FOR APU

PREDICTING AND AVOIDING FAILURES

- Advanced health monitoring based on big data
 - helps airlines maintain maximum control over their APU assets
 - keeping them operating for as long as possible with minimal effort.

Predicted probability for maintenance

Features

- APU start time, exhaust gas temperature, bleed system, oil system, generate load
- · Life limit parts monitoring, fleet average
- · Smart dashboard, degradation model

Available for

- Airbus 319-321, 330 and 340
- Boeing 777, 737 and 787
- Embraer 175 190

PROGNOS FOR APU

CONCRETE USE CASE - BOEING 787 APU

Normal behaviour:

APU "X" behaviour:

APU Engineer noticed abnormal behaviour and advise the airline to plan inspection of the oil filter.

"Generator" started to fail which contaminated the gearbox. The APU was removed serviceable and failure was prevented. That resulted in preventing repair of the powerhead.

Particles we

found

PROGNOS FOR ENGINE

PREDICTING AND AVOIDING FAILURES

- Advanced Engine Health Monitoring solution
 - Agnostic solution
 - 1600+ assets monitored

- Predict engine defects to drive maintenance operations more precisely than ever
- 3 different usages
 - Daily monitoring: if "No Data" or any other Urgent Alerts.
 - Weekly monitoring: Normal Alerts, trend review per fleet, email reports
 - Monthly monitoring: Degradation Trends and Predictive Maintenance Planning
- Advisory view: alert status with comprehensive workflow.
- Charts of Engine data: analysis of parameters to assess Engine Condition Monitoring.
- More advanced monitoring
 - Monitoring and alert setting combine many sensors
 - Monitoring is customized by engine models
 - Tailored to operating environment
 - Solution learns what is normal behavior for a specific ESN (self adaptation)
 - Increase trend accuracy
- → better identification issues / impeding failures!

Generic Model

Customized model (ESN level)

PROGNOS FOR ENGINE

CONCRETE USE CASES

PROGNOS FOR ENGINE

CONCRETE USE CASES

#3: 787 GEnx OGV piston ring liberation

BSI showed OGV piston ring in flow path.

Defects not seen by other ECM products, and no CNR's received (7 cases)

PROGNOS FOR AIRCRAFT

WORFLOW OVERVIEW: COLLECT, PROCESS, ANALYZE, PROVIDE RECOMMENDATION

- Get recommendations to avoid delays and flight cancellations from 30 to 50 flights ahead
- By collecting and recording data from the aircraft, and then processing and analyzing them, PROGNOS detects failures before it happens

AGNOSTIC SOLUTION

TO ADDRESS OPERATORS CONCERNS

CONCRETE USE CASE 787

ATA 21 SUPPLEMENTAL COLLING UNIT (SCU) + SCU MOTO CONTROLLERS (MC)

CONCRETE USE CASE A320

ATA 21 AIR COOLING SYSTEM

ADAPTIVENESS

CONCRETE USE CASE A320

ATA 32 BRAKES TEMPERATURE SENSORS

KEEP YOUR AIRCRAFT FLYING!

OPERATOR BENEFITS

- Combining big data and engineering expertise with operator experience → develop focused solutions
- Brings the best of Health Monitoring and Predictive capabilities to airlines
 - Increase operational performance (delays and cancellations)
 - Increased operational reliability
 - Improve operations Integrity (decrease MEL items and PIREPS)
 - Improve aircraft availability & trouble-shooting procedures
- 100% accuracy: 200+ removals / no NFF (with tests performed by OEM)
- Very high prediction rate (65%+, still improving with experience acquired)
- No unscheduled Engine/APU Shop Visits or removals through event prediction
- Agnostic
- Rely on a potent Supply Chain to extend analytics value beyond Ops benefits
 - Reduce Safety Stock
 - Reduce unnecessary removed components and number of NFF
- Easy implementation & Secure data environment and delivery

THANK YOU FOR YOUR ATTENTION

Follow us

www.afiklmem.com

Operational efficiency driven by data & analytics

Rita Barata Silva, Head of Data & Analytics, Vueling Airlines

IAG & VUELING: being part of one of the worlds' largest airline groups

O 1500		IAG	vueling
×	Aircraft (2019)	573	118
iji	Passengers transported in LTM	c.113M	c.33M
	Total employees (indirect)	c.64.300	c.4000 (+2000)
\bigcirc	Destinations	268	+120
®	Revenues (2018)	24.406 M (+6.7%)	2.398 M (+6.7%)

IAG Cargo

VUELING CONNECTIVITY:

VY is the #1 airline in domestic flows in Spain and within France & Spain

TOURISM

is key for the Spanish economy growth

82,8 millions of tourists in 2018 (1)

+1,1% vs. 2017 (2)

+80% of tourists travelled by plane

81.857 millions € Total foreign spending

+3,3% vs. 2017

1.086 € average / tourist (3)

iîîîî

Tourism represents 11,7% GDP

Main destinations

19,1M

2 13,8M

13,7M

vueling

(1) Foreign tourist

(1, 2) Source 2018: Estadística de movimientos Turísticos en Fronteras (FRONTUR). INE

(3) Source 2018: Encuesta de Gastos Turísticos (GASTUR). INE

VISION unlock the potential of our people

OUR FLIGHT PATH From MS Excel to data-driven

Highly diverse, hands-on and collaborative team..

... working toward delivering insights and value to Vueling (especially quick wins)

Gartner Maturity Score 3,35

Data-driven Strategy

DATA MANAGEMENT

people

Big Data Cloud Architecture

vueling

Scalability

Anywhere Business

Dat has a better idea

Value

What is the question, business problem or target outcome?

Information

What data is involved? Where is the Data?

Analytics

What analytical or data science methods are?

Innovation

ANALYTICS CENTER OF EXCELLENCE a Hub & Spoke model

Other Commercial Network & Scheduling **ANALYTICS** Customer **CENTER OF EXCELLENCE** Operations Corporate

IMPROVEMENTS ACHIEVED

Single version of truth

Breaking silos

Advanced analytics

Real time

Self-service

Automation

PLANNING 2.0 A new feedback-based paradigm

LCC trade-off

vueling

- Break silos: crew info, network info, flight ops & maintenance restrictions,
- Build a Single source of Truth (flights status & delays)
- Real time tracking of operational KPIs
- Historify every minute of operational status, decisions & resources
- Customer 360 vision improving service, commercial offers and disruption management
- Network Simulator
- Dynamic Allocation (maintenance tasks and ops feasibility, stand optimization, intelligent buffer allocation, fuel efficiency)

- Disruption management (flight, crew and passenger reacommodation)
- Flight Plan optimization to avoid regulations minimizing costs
- Post-operations analysis and technical specs optimization
- ATC forecast
- Self service capabilities and tools
- Maintenance program optimization
- Crew Control Monitoring and Automation
- Crew stand-by allocation model
- Handling monitoring and performance KPIs
- Handling resource allocation optimization (ex. Checkin counters)

In a competitive, fast-paced and challenging world...

We need to develop strong in-house capabilities...

Advanced analytics, Artificial Intelligence and Machine Learning

Scalable and reliable technology & architecture

Data quality & Governance

Influence business processes

... at the same time that we learn from external accelerators

OOO OOO UPC

vueling

THANKS!

Using data for Preventive Maintenance for Embraer E190 aircraft

Yuliya Gerasymchuk, Financial Manager and Head of PMO, Ukraine International Airlines

USING DATA

Preventive Maintenance for Embraer 190/195

Vadym - Chief Engineer, Avionics Systems

Andrey - Captain, E190 Technical pilot

UKRAINE INTERNATIONAL AIRLINES

UR-EMA	LH HPSOV closed	AFT PAX door LKD snsr adj recomm	EDP 1 PRESS SW/SPDA2/LRM3/MAU2/GIO2	MAU 2 GIO2A FAULT	FLAP LO RATE
12.07.2017	OK	OK	OK	45452139CMC	OK
13.07.2017	OK	OK	ОК	45452139CMC	27530001ACE
14.07.2017	OK	OK	29310009UT1	45452139CMC	ОК
15.07.2017	OK	OK	ОК	45452139CMC	OK
16.07.2017	OK	OK	ОК	OK	OK
17.07.2017	OK	OK	OK	OK	ОК
18.07.2017	36111103AM1	OK	ОК	45452139CMC	OK
19.07.2017	OK	OK	OK	OK	ОК
20.07.2017	OK	OK	ОК	OK	OK
21.07.2017	OK	OK	OK	OK	OK
22.07.2017	OK	OK	OK	45452139CMC	OK
23.07.2017	OK	ОК	29310009UT1	45452139CMC	OK
24.07.2017	OK	52122111PSS (CRUISE)	ОК	OK	OK
25.07.2017	OK	52122111PSS (Cruise)	OK	OK	OK
26.07.2017	OK	ОК	ОК	ОК	OK
27.07.2017	OK	ОК	ОК	OK	OK
28.07.2017	OK	ОК	ОК	45452139CMC	OK
29.07.2017	OK	ОК	ОК	45452139CMC	OK
30.07.2017	OK	52122111PSS (Cruise)	ОК	OK	OK
31.07.2017	OK	OK	29310009UT1	45452139CMC	OK
01.08.2017	OK	OK	ОК	OK	OK
02.08.2017	OK	OK	OK	OK	OK
03.08.2017	OK	52122111PSS (Cruise) need	OK	45452139CMC	27530001ACE (APPROACH)
04.08.2017	OK	OK	29310009UT1 (may be caused by Generic I/O)	45452139CMC	OK
05.08.2017	OK	OK	OK	OK	OK
06.08.2017	OK	OK	29310009UT1	OK	OK
07.08.2017	OK	OK	OK	OK	OK
08.08.2017	OK	OK	29310009UT1	45452139CMC + EICAS AVNX MAU 2A FAULT	OK
09.08.2017	OK	OK	OK	Generic I/O was replaced iaw WO 889283	OK
10.08.2017	OK	52122111PSS (Cruise)	ОК	ОК	OK
11.08.2017	OK	OK	OK	OK	OK
12.08.2017	OK	52122111PSS (Cruise)	ОК	OK	OK
13.08.2017	OK	52122111PSS (Cruise)	ОК	OK	OK
14.08.2017	OK	ОК	OK 5	52139CMC (may be caused by transitory condition) + EICAS AVNX MAU 2A FAULT if msg will appear one more time than continue trou	OK OK
15.08.2017	OK	OK	OK	OK	ОК

IATA 5th Airline Cost Conference

PROGRAM

November 13-14, 2017

Eden Roc Hotel Miami | USA

AIRLINE COST MANAGEMENT GROUP

New Vision for Airline Cost and Operational Data

Today airlines' data-driven strategies require a trusted data source to keep a tight control over cost and performance data. Unlike passenger and cargo sales data, there is no standard for consolidating this data across different areas within an airline.

With the endorsement of the Airline Cost Management Group (ACMG), a group of **65 airlines** focusing on matters concerning airline costs and measures to optimize them, IATA is moving cost management activities into a next generation. The Airline Cost Center will become a unique source in the industry for benchmarking airline cost and performance data, a business intelligence solution of global reach.

COST STRUCTURE

7.2%

Source: ACMG 2017 Annual Report

STRATEGIC KPIs

Cook Churchung	FY2017 ACMG Airlines			UIA 2017
Cost Structure	US Cents/ASK	\$/FH	\$/Pax	
Fuel and Oil	1.69	2.40	48.10	
Aircraft Ownership	0.91	1.29	25.80	
Maintenance and Overhaul	0.77	1.09	21.90	
Reservation, Ticketing, Sales and Promotion	0.52	0.74	14.90	
General and Administrative	0.53	0.76	15.20	
Station and Ground	0.48	0.69	13.80	
Flight Deck Crew	0.47	0.67	13.30	
Airport Charges	0.43	0.61	12.10	
Passenger Service	0.36	0.51	10.20	
Cabin Attendants	0.35	0.50	10.10	
Air Navigation Charges	0.30	0.43	8.50	
IT and Communications	0.08	0.11	2.20	
Flight Equipment Insurance	0.01	0.15	0.30	
Total	6.90	9.92	196.40	

PRIORITIZING

- Fuel
- Maintenance
- Irregular Operations

•

TEAM

HOW CAN WE HELP?

- Get connectivity for online
- Upgrade Aircraft software
- Setup analytical software
- Update internal processes

CLOSING THE LOOP

- Setup completed Oct 2018
- CAS/CMC Information
- Systems Trend Information

1.SINGLE-BLEED OPERATIONS

2. ENGINE FADEC

Full Authority Digital Electronic Control System controls the operation, performance and efficiency characteristics of the engine through full authority control over the entire engine fuel metering unit, variable stator vanes, operability bleed valve, T2 sensor heater, thrust reverser actuation, engine starting, ignition and also providing engine limit protection during ground starts.

2. ENGINE FADEC

- Engine FADEC 1 (no dispatch) <=> FADEC 2
- 7 days both worked properly
- A new fault message appeared (FIM executed → wire and sensor both ok, so only FADEC according to FIM)
- Solution to replace FADEC?

2. ENGINE FADEC

T1.2 Sensor

GENERAL DESCRIPTION

The temperature indicating system sensors provide temperature data of the engine air inlet, compressor air inlet, compressor discharge, HPT (High Pressure Turbine) case shroud, and LPT (Low Pressure Turbine) stage two nozzle segment. The FADEC uses these information to control the engine.

- The T 1.2 sensor is a dual-element RTD (Resistance Temperature Device) mounted in the flow stream, in front of the fan and above the engine centerline, with one element hardwired to each FADEC channel.
- Reviewed and decided to replace sensor
- $\sim 2k \$ vs \sim 50-60k \$$

3. APU FAIL

- Failure of oil pressure sensor
- Failure of APU FADEC
- Defective HARNESS

TASK 49-93-00-810-801-A

Degradation of APU Oil Pressure Sensor Circuit

General

(1) This task is for fault code:

FAULT CODE	FAULT DESCRIPTION
49935214APU	APU OIL PRESSURE SNSR DEGRADED

- (2) After completion of the troubleshooting, put the aircraft back to its initial configuration.
- Fault Description
 - This maintenance message gives an indication that the oil-pressure-sensor circuit is defective.
 - (2) The FADEC senses a fault in the oil pressure sensor and sends a fault message to the CMC.
 - (3) This failure is latched on the APU FADEC. To confirm the fault, it is necessary to turn the APU master switch to the OFF position and then operate the APU (AMM TASK 49-10-00-910-801-A/200).

. Probable Causes

- (1) Failure of OIL PRESSURE SENSOR (AIPC 49-93-03) (AMM MPP 49-93-03/401).
- (2) Failure of AUXILIARY POWER UNIT (APU) FADEC (AIPC 49-61-01) (AMM MPP 49-61-01/401).
- (3) Defective HARNESS (WM 49-41-50) (WM 49-71-50).

3. APU FAIL

- Sensor was switched EMC <=> EMB (problem occurred and sensor was replaced)
- APU FADEC was switched (100% not the problem)
- After this EMC 10 days was okay, then fault was reported again
- Decision was to replace APU Wire (at ~100k \$)
- Additional troubleshooting was performed and decision to replace sensor (~12k \$) first was made
- And it worked!

4. BLEED FAIL

- "Bleed 1 fail" message
- HPSOV (High-stage pressure shut-off valve)
- Checked FHDB

4. BLEED FAIL

Main	\$A\$5536	1000,219,0,0,ACTIVE,03/11/2019 10:03:04,3,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$5537	1000,219,344,2681,ACTIVE,03/11/2019 10:03:04,3,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,PRI HX IN TEMP SNSR (PK1)/WRG,21515061AM1,Internal Hardware
Main	\$A\$5751	1000,219,0,0,INACTIVE,03/11/2019 10:05:14,3,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$6022	1000,219,0,0,ACTIVE,03/12/2019 14:51:41,4,7,APPROACH,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$6023	1000,219,935,2523,ACTIVE,03/12/2019 14:51:41,4,7,APPROACH,BLEED 1 FAIL,CAUTION,LH HPSOV (CLOSED) [C2]/WRG FAULT,36111103AM2,Internal Hardwar
Main	\$A\$6024	1000,219,934,2868,ACTIVE,03/12/2019 14:51:41,4,7,APPROACH,BLEED 1 FAIL,CAUTION,LH HPSOV (CLOSED) [C2]/WRG [AI],36111106AM2,Internal Hardware
Main	\$A\$6027	1000,219,0,0,INACTIVE,03/12/2019 14:52:04,4,7,APPROACH,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$6033	1000,219,0,0,INHIBITED,03/12/2019 14:56:34,4,8,ROLL OUT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$6034	1000,219,935,2523,INHIBITED,03/12/2019 14:56:34,4,8,ROLL OUT,BLEED 1 FAIL,CAUTION,LH HPSOV (CLOSED). [C2]/WRG FAULT,36111103AM2,Internal Hardw
Main	\$A\$6040	1000,219,0,0,ACTIVE,03/12/2019 14:56:47,4,8,ROLL OUT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$6041	1000,219,935,2523,ACTIVE,03/12/2019 14:56:47,4,8,ROLL OUT,BLEED 1 FAIL,CAUTION,LH HPSOV (CLOSED) [C2]/WRG FAULT,36111103AM2,Internal Hardware
Main	\$A\$6060	1000,219,0,0,INACTIVE,03/12/2019 15:51:31,4,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$11866	1000,219,0,0,ACTIVE,03/18/2019 16:05:31,28,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$11867	1000,219,344,2681,ACTIVE,03/18/2019 16:05:31,28,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,PRI HX IN TEMP SNSR (PK1)/WRG,21515061AM1,Internal Hardware
Main	\$A\$12278	1000,219,0,0,INACTIVE,03/18/2019 16:09:59,28,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$16189	1000,219,0,0,ACTIVE,03/24/2019 16:14:36,58,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,
Main	\$A\$16206	1000,219,0,0,INACTIVE,03/24/2019 16:18:31,58,2,PREFLIGHT,BLEED 1 FAIL,CAUTION,,,

4. BLEED FAIL

- Apparently there were multiple EICAS & maintenance messages, some resets (not during acceptance flight though)
- Situation was reported to lessor
- Valve at lessor's cost (~30k \$)

IS THE LOOP REALLY CLOSED?

- Logistics
- Analytics
- Internal procedures & Ownership
- Promotion
- Value
- Scale

SUMMARY

- Passion
- Hard work
- Constant challenge

Networking Break

Opening Remarks

Chris Markou, Head Operational Cost Management, IATA

Digital Collaboration – From insights to scalable value

Andrew Hutson-Smith, Director of Business Development, R2 Data Labs, Rolls-Royce Plc

© 2019 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated

TotalCare®, SelectCare®, Life®, Term®, Flex®, Trent® and UltraFan® are registered trade marks of Rolls-Royce plc.

Non-Confidential © 2019 Rolls-Royce

Not Subject to Export Control

Digital Collaboration From insights to scalable value

Andrew Hutson-Smith

Director, Business Development, R² Data Labs

Group wide digital strategy

- Re-invent with Digital
- Outside in thinking

Digital Organisation 3.0

Decentralised and Networked

- Guilds
- EcoSystem
- Academy
- Disruptive thinking
- Collaboration

Rolls-Royce Analytics journey

Equipment Health

Generation 1

Deployed

Product

Generation 2
Centralised
Intelligent Fleet

Generation 3
Self-learning
and Predictive

Generation 4
Federated and
Collaborative

Digital Organisation

Org 1.0

JV – IT Services

and Industrial

Org 2.0
Central Specialist
Group

Org 3.0

Decentralised

Networked

Project Melwood – Digital Future

Q1: Increase value and pace

Q2: Digital platform needs

Innovation Example

Flight Efficiency

- Complex data sources
- Cross organization value
- Spectrum of analysis
- Spectrum of deployment methods

Discovery

Planner

Customize contingency figure to route

Pilot

Operations Control Centre

Prediction / automation - fuel and on-time performance

There are a spectrum of approaches and deployment needs

Rather than monolithic products, companies will begin to manage and release value at a more granular level

IP/\$/Knowledge

Breadth of applications and approach

Execution Discovery

office

cockpit

Applications

- 1. Safety and compliance
- 2. Operational efficiency
- 3. Availability

and their interactions

Innovation to integrity service process and platform

Convergence enables Increased value and access

Distributed value where many parties contribute

Adjacent examples

- Marine
- Automotive
- Pharmaceutical
- Telecoms
- Banking

Enabling the network of value

Conclusion

- 1. Enable distributed value
- 2. Networked effect & collaboration
- 3. Choice of analytics solutions
- 4. Controlled federation
- 5. Simplified commercial structures

Lifecycle management of above

Project Melwood - A platform view

Digital stakeholder engagement Collaboration **Distribution and Marketplace Analytics Analytics Analytics** platform X platform A platform B

Connections

Collaboration Control

Choice

Industry & initiative data structures & marts
Best practice commercial structures and contracts

Using data technologies to keep airline schedules on time

Margrét S. Otterstedt, Data Analyst, Operations Support, Icelandair

ABOUT ICELANDAIR

- Icelandair was founded in 1937
- Icelandair connects 23 gateways in Europe with 19 gateways in North America, through Iceland as a hub
- The network is based on 24-hour rotation, with connecting flights leaving Iceland in the mornings and afternoons
- The department Operations Support was founded in 2018 to connect
 Operations and drive operational improvements across departments

WHICH CONTRIBUTORS TO FOCUS ON?

WHICH CONTRIBUTORS TO FOCUS ON?

WHICH CONTRIBUTORS TO FOCUS ON?

WHAT ARE THE GOALS?

- + Optimize the entire business instead of individual units
- + We are all pieces of the same puzzle
- + Increase communication
- + Centralize data flows
- + Use data to eliminate doubt
- + Fight Systematic Risk

IMPROVING LONG TERM PLANNING

Supervisor	Time		TEL	Radio
Employee no. 9	05:30-17:30	Reception // Assist with Crew check in	1	1
Employee no. 10	05:00-17:00	Check in	2	2
Employee no. 11	05:30-17:30	Check in	3	3
Employee no. 12	05:30-17:30	Zone A - C	4	4

FINDING THE RIGHT MOTIVATION

- Greater company performance awareness
- Positive feedback
- Gamification
- Performance bonuses
- Consensus regarding our main KPI's what counts as success?

GOING FORWARD

- Digitalization
- Data-Driven Decision Making
- Clearer Business Processes
- Increased Cost Awareness
- Focus on Continuous Improvements

Avoiding turbulence and disruptions: a new collaborative approach

Martin Gerber, Technical Pilot Airbus A320, Swiss International Air Lines

Avoiding turbulence – a new collaborative approach Agenda

- 1) Motivation Turbulence impact on operation
- 2) Stakeholders affected by aviation turbulence
- 3) Turbulence reporting yesterday and tomorrow
 - Energy Dissipation Rate (EDR)
- 4) The IATA Turbulence Aware Project
- 5) Application for objective EDR data sharing
- 6) Extension of EDR measurement capability to more airlines

Avoiding turbulence – a new collaborative approach Motivation - Turbulence impact on operation

Turbulence Injury Count

2007 – 2016 Crew Passenger Serious 82 20 Minor 126 212 Total 208 232

Grand Total 440

Total Injuries over 10 Year Period

Source: IATA, Search only included FAR Part 121 Operators (U. S. airlines)

Avoiding turbulence – a new collaborative approach Motivation - Turbulence impact on operation

Cloud-induced or Convectivelyinduced Turbulence (CIT)

In-cloud Turbulence

Source: P. Lester, "Turbulence – A new perspective for pilots," Jeppesen, 1994

Avoiding turbulence – a new collaborative approach Stakeholders affected by aviation turbulence

Flight Crews

- Multiple data sources (ATC "chat" room, dispatchers, company-specific forecast products, on-board radar)
- Reporting subjectivity, inaccuracy
- Cabin management, tolerance for risk

- Cabin management
- Insufficient info from flight crews
- Obligation to continue duties when seatbelt sign is on
- Uncooperative passengers

ATC

- No access to real-time turbulence data at work area
- PIREPs communicated via "sneaker net"
- Altitudes "blocked" out with repeated turbulence reports, can persist for hours

Research / Forecaster / Dispatcher

- Deterministic forecast models, not validated in real-time
- Limited access to turbulence information
- Limited communication with crew

Source: Tammy Farrar, FAA NextGen, Aviation Weather Division

Avoiding turbulence – a new collaborative approach Turbulence reporting yesterday and tomorrow

Yesterday: PIREP

"If you can still drink your coffee, it's light turbulence."

→ subjective, aircraft dependent

Tomorrow: Automated EDR Reports

→ objective, aircraft independent

Avoiding turbulence – a new collaborative approach Energy Dissipation Rate (EDR)

Energy Dissipation Rate (EDR)

- ICAO Annex 3 metrics for turbulence
- Measuring the state of the atmosphere around the aircraft in flight
- Aircraft independent absolute value
- Simple software installation

Source: IATA

Source: Ships on a Stormy Sea by Johannes Christiaan Schotel, 1826

Avoiding turbulence – a new collaborative approach How to calculate EDR

Angle of Attack True Airspeed

(min. 8 Hz)

(min. 8 Hz)

Algorithm

(NCAR, DLR)

ACMS, or

EFB with AID

Connectivity

(ACARS, ...)

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project

Source: IATA, Turbulence Data Sharing Project, K. Vashchankova, 2019

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project

Existing turbulence data is often not shared

Fragmented data pools limit benefits

Airlines need to see beyond their own data to mitigate turbulence

Importance of global data coverage

Source: IATA, Turbulence Data Sharing Project, K. Vashchankova, 2019

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project: Web Viewer

IATA Turbulence Aware

42.74100

Longitude

-86.80600

Severity

Light Aircraft: Severe

Peak EDR

0.384

Mean EDR

0.18

Wind

309° / 121 kt

Static Air Temperature

-52.0°C

© IATA 2019 · Map © OpenMapTiles, © OpenStreetMap Contributors · • All Systems Operational

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project: Data Visualization

Source: Ian Painter -

Snowflake Software

Avoiding turbulence – a new collaborative approach The IATA Turbulence Aware Project

Swiss 777 EDR Turbulence Observations 3/1/19 to 5/16/19

Avoiding turbulence – a new collaborative approach Application for objective EDR data sharing

Flight Crews

- Display of nowcast turbulence forecast
- Enhances pilot's ability to anticipate and react to possible turbulent conditions
- Better decisions based on not only cabin safety, but ride comfort and fuel-burn efficiency (reduced emissions)

Sources: GTD (top left)

LSY, AerLingus (top right)

PACE (right)

Avoiding turbulence – a new collaborative approach Application for objective EDR data sharing

Cabin Crew

The cabin crew and passengers are warned and secured in time

 The service can be scheduled around the time of increased turbulence activity

Less injuries

Airline reputation

Avoiding turbulence – a new collaborative approach Application for objective EDR data sharing

Researcher and Forecaster

- «Turbulence Forecasting remains one of the last great challenges of numerical weather prediction.» 1)
- Roadmap for WAFS calls for the WAFC to implement turbulence forecasts utilizing EDR during the **Aviation System Block Upgrades** (ASBU) time frame (2019-2024). 2)
- Improve numerical weather prediction models

²⁾ 4th Meeting of the Meteorological Panel (METP), Montréal, 10 to 14 September 2018

Sources:

T. Rahmes, Boeing – B.Sharman, NCAR A. Barleben, Deutscher Wetterdienst DWD

¹⁾ Robert Sharman (NCAR, Geophys, Res, Lett. 39, 2012

Avoiding turbulence – a new collaborative approach Application for objective EDR data sharing

ATC

- Reduction in ATC workload: Less requests for altitude changes
- Improved airspace capacity
- Less reroutes, delays, diversions, cancellations
- **Turbulence Avoidance Modeling** (TAM): Developing predictive models of pilot behavior in response to turbulence encounters

Source: Rafal Kicinger and Christina Bittle, Metron Aviation, Turbulence Impact Mitigation Workshop 3, 5-6 September 2018, Mclean, VA.

Avoiding turbulence – a new collaborative approach Extension of EDR measurement to more airlines

IATA Turbulence Aware

- A global platform for sharing automated EDR turbulence reports in real-time
- Data is collected from airlines, business aviation or third party ground servers in real-time
- Data processing through the platform is max. 30 sec
- Airlines can use their own flight planning and in-flight tools to display the data, or use IATA Turbulence Aware viewer in-flight via Wi-Fi

→ Global collaboration is the key to success!

Thank you

The adoption of network-centric data sharing in Air Traffic Management: The case of SWIM

Marina Efthymiou, PhD, Course Director for M.Sc. in Aviation Leadership, Assistant Professor in Aviation Management, DCU Business School

Agenda

Problem statement

SWIM fundamentals

What do the different parties think about SWIM?

The case study of A-CDM at Dublin airport

15 mins Arrival Punctuality

75.8%

-3.9%pts vs. 2017

Flights arriving > 15 minutes ahead of schedule Early Arrivals 9.5% -0.2%pts

Main Delay Causes 2018 in mins/flight

Reactionary 6.7

Airline 3.6

ATFM En-Route 1.7

2018 Departure Delay (from all causes)

14.7 mins/flight

+2.3 mins vs. 2017

Need for new (or optimised) technologies to improve the overall performance of the network

- Evident possibilities:
 - Optimized aircraft separation
 - Real-time airborne fleet adjustment
 - Congestion prediction and holding pattern elimination

System Wide Information Management concept (SWIM)

• **GOAL:** provide a platform for open sharing of all information between operators, airports, ANSPs and meteorology services.

Major drivers/factors:

- Availability and penetration of the required level of technology within the airborne fleet and ground infrastructure; and
- ➤ Willingness and possibility of actors to share their operational data with potential competitors.

What do the different parties think about SWIM?

Exploratory study and In-depth interviews with 14 senior experts working for :

- Airbus
- Boeing
- COOPANS
- ANSPs
- Airports

Themes of research:

- SWIM status
- Data analysis
- Barriers to implementation
- Drivers to change

Analysis:

- 411 data points
- 125 excerpts

Barriers to implementation

- Difficulty to negotiate agreements with the pilots' trade unions to allow data gathering.
- Cost and the lack of a positive business case evidence.
- The need to upgrade the ground and airborne systems to fix a problem that does not exist today they can quite effectively communicate and operate with the existing technology.
- The maturity of the concept with concerns on data validity and cyber security as a potential blocking point to stakeholders.
- Natural resistance to change safety and operational perspective.

Drivers of change

PUSH

- Clarity of communications
- Transparency
- Ability to be more agile and to quickly and economically integrate new functionalities and stakeholders
- Obsolescence of technology
- Regulations

A-CDM: Dublin Airport

- A-CDM requires organisational culture changes, handling of sensitive data, procedural changes and understanding of all A-CDM partners.
- The concept relies on improved messaging between the airport, airlines, ground service providers, ANSP, and the network manager, ensuring improved awareness for all these stakeholders.

Local benefits:

- improved efficiency of stand allocation;
- improved aircraft sequencing and shorter taxi times yielding fuel economy;
- improved availability of ground handling services.

A-CDM: Barriers to success

- Ability to re-sequence aircraft on ATC request: DUB however has a primarily single taxiway infrastructure = no re-sequencing is possible for aircraft that have been pushed back from the stand
- substantial **cultural** issue with A-CDM: All respondents claiming that the main beneficiary of A-CDM is one of the other stakeholders
- **Different needs** are not aligned: No cost burden sharing with the other stakeholders.
- Stakeholders questioning the validity of the A-CDM model mandate: only airports exceeding 77K movements are required (and subsidized) to implement A-CDM; Compatibility of the concept with the operational reality of ATC

A-CDM: Drivers of change

Benefits of network predictability

Benefits on capacity optimization

• EU mandate and availability of funding

Conclusions and Recommendations

The potential of data sharing in aviation is substantial.

- Command and Control regulations vs Performance Regulation
- Effective stakeholder management to gain buy-in from all participants.
- One of the biggest constrains of SWIM is the cost of investment.
 - R&D investment in the area of airspace harmonisation, technological innovations and especially IoT
 - Subsidisation of technology adoption for airlines, airports and ANSPs

<u>Based on:</u> Lootens, K. and Efthymiou, M. (2019). The adoption of network-centric data sharing in Air Traffic Management. Information Resources Management Journal, 32 (3), 48-69. DOI: 10.4018/IRMJ.2019070103

Networking Lunch

