IATA **AVIATION** DATA **SYMPOSIUM**

ATHENS, GREECE 25-27 JUNE 2019

Sponsored by:

Opening Remarks

Houman Goudarzi, Head of BI & Industry Engagement, IATA

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

The Air France-KLM case study

Leon Gommans, Science Officer, Air France-KLM

ATHENS, GREECE 27 JUNE 2019

AI Lab

Sponsored by: **OpenJaw**

A CONSORTIUM GOVERNED DIGITAL DATA MARKETPLACE

Applied research into a trusted, fair and economic way to share (big) data assets in AI context to unlock value for our industry

IATA ADS AI Lab June 27th 2019 Athens, Greece

Leon Gommans, PhD Air France KLM Group IT Technology Office, R&D department Researcher at University of Amsterdam, Systems & Networking Engineering Lab.

CONTEXT: AERONAUTICAL SYSTEMS

AI GENERATES MANY QUESTIONS CREATING INITIATIVES TO ANSWER THEM

1950 "Can machines think?"

Alan Turing asked the question:

"Can a machine act as player in an imitation game?"

Alan Turing "Computing Machinery and Intelligence", Mind 49: 433-460, 1950.

Now "Can Al replace the pilot?"

Creg Hyslop, CTO Boeing, asked the question:

"How do we maintain the existing levels of safety with an AI-based system in the cockpit?"

Charlotte Jee, "Al is set to change the aerospace industry - but won't be flying planes anytime soon", MIT Technology Review, Sep 13th 2018.

Industry standards bodies are joining to consider the many questions around the role of AI in aeronautical systems and applications considering its (data) needs:

- SAE International: G.34 Applied AI for Flight Critical Systems
- EUROCAE WG-114 Artificial Intelligence
- RCTA
- SAE ITC: ExchangeWell consortium initiative to create trusted implementations.

Parties need to collaborate: OAMs, OEMs, MRO's, Operators, Regulatory bodies,.. All have parts of the puzzle. Need more involvement of OPERATORS – Role for IATA?

RESEACHING DATA SHARING SOLUTIONS:

A DIGITAL DATA MARKETPLACE GOVERNED BY AN INDUSTRY CONSORTIUM

RESEARCH PROBLEM

AI QUALITY DEPENDS ON DATA AVAILABILITY: HOW TO ENABLE ACCESS TO AS MUCH DATA AS POSSIBLE?

RESEARCH PROBLEM

AI QUALITY DEPENDS ON DATA AVAILABILITY: HOW TO ENABLE ACCESS TO AS MUCH DATA AS POSSIBLE?

8

WHAT IS A DIGITAL MARKETPLACE ABOUT?

ORGANIZING TRUST, FAIRNESS AND COMPETITION TO SERVE INNOVATION

- Serves a common benefit no single organization can achieve on its own.
- Is created and governed by an industry consortium as a means to reduce risk, ensuring competition and fairness.
- Supply members advertise their assets, contracts arrange asset access and usage by other members.
- To prevent data asset exposure, members can use a consortium governed data exchange infrastructure to execute data science scenario's
- Allows consortia to implement (digitally) enforceable contracts, whilst supporting dispute resolution by immutable logging.

JOURNEY OF THE DATA SCIENTIST / ENGINEER

ROLE OF THE DIGITAL DATA MARKETPLACE

10

DIGITAL DATA MARKETPLACE GOVERNANCE

IMPLEMENTATION VIA A FOUR STEP APPROACH

DIGITAL DATA MARKETPLACE ARCHITECTURE

IMPLEMENTING ESSENTIAL ELEMENTS

AIRFRANCE KLM

KEY COMPONENT: FEDERATED ANALYTICS

PREVENTS RAW DATA EXPOSURE AS ONLY THE ALGORITHM SEES THE DATA

D&LLTechnologies

MARKETPLACE WORKFLOW

IMPLEMENTING THE INDUSTRIALIZATION PHASE

NEXT: "EXPERIMENT PHASE" OF THE DATA SCIENTIST JOURNEY

QUESTIONS

We can only see a short distance ahead, but we can see plenty there that needs to be done.

Alan Turing

leon.gommans@klm.com

Improving the Operation, One Model at a Time

Michael Shores, Director of Data Science, United Airlines

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

Improving the Operation, One Model at a Time

Michael Shores United Airlines June 2019

Where we were in 2018

What we changed in 2019

What we're doing

Where we're headed

Agenda

Last year I spoke about machine learning in the personalization context

Select Offer	Choice Offer
1. Economy Plus®	 Economy Plus® Extra checked bag
+ \$205 per person	+ \$290 per person
Select	Select

Fares are for the entire one-way trip, per person, and include taxes and fees. Additional bag charges may apply.

Economy (lowest)											
	Sat 12/9	Sun 12/10	Mon 12/11	Tue 12/12	Wed 12/13						
<	\$106	\$106	\$71	\$51	\$45	>					

Show fare type comparison ?

Depart ‡	Arrive ‡	Stops ‡	Duration 🗘				Basic Economy (most restricted) ‡	Economy ¢	Economy (flexible) ¢	First (lowest) ¢
+ Recomm	nended flight	Learn mor	e							
7:30 am	10:40 am	Nonstop	2h 10m	3	Details	Seats	\$130 Select	\$155 Select 2 tickets left at this	\$387 Select	\$436 Select 1 ticket left at this
+ Recomm	nended flight	Learn mor	e					price		price
8:00 am	11:10 am	Nonstop	2h 10m	S.	Details	Seats	\$130	\$155	\$387	\$340
							Select	Select	Select	Select
								3 tickets left at this price		2 tickets left at this price
								price		price

But something big was noticeably absent....

The Operation

After careful thought, we made a few changes

We used machine learning to drive quicker responses to our customers

- Why: Reading and understanding customer feedback is critical but time consuming
- What We Did:
 - Automatically identify the topic customers discuss
 - Predict how to compensate a customer
- Result: Responses per hour up nearly 2x
- What's Next: We're building a sentiment analysis tool to help with case prioritization and routing

Time series modeling helped our Polaris Clubs plan more efficiently

- Why: The Polaris Clubs are a unique experience for our customer which presents unique logistical challenges
- What We Did: Built a time series model to predict the number of customers coming to our Polaris Clubs over the next week
- Result: Improved ability to manage staffing and catering requirements
- What's Next: We're looking at better long term forecasting and expanding our model to other clubs

- Why: Mechanics carefully detail airplane issues but it's hard for analysts to read so much text
- What We Did: Used text classification to identify the ATA chapter corresponding to the Log Page
- Result: Better trending and trouble shooting of aircraft issues
- What's Next: Predicting which parts will be needed to remedy particular issues

- More to come in Operations
- Accelerate model sharing and deployment
- Image? Video? Voice?
- Catch my team at ODSC India in August!

Google's application of Machine learning for Flights Data

Allan Fraser, Manager, Software Engineering, Google

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

Google's Application of Machine Learning to Flights Data

Allan Fraser Manager, Software Engineering allanfraser@google.com

Mission

Our mission is to be the **trusted** place where travelers go for the most **useful** information to make **fast**, **effortless decisions**.

Google Flights Pillars

Flight Search

Airline Partners

Intelligent Assistance

Flight Price Insights - Know when to book your flights

Flight Status - Know if your flight is on time

Search

Delta DL 484 2 flights found	1							
	THU, JAN 11		SAT, JAN 13					
	o Cleveland – I 3:05 pm → 6:10		*					
At least 30m Incoming fligh flight	<mark>delay likely</mark> t DL 4636 is dela	yed, which may	affect this					
0	for originally scho status on an airpo							
Updated 15m 1	6s ago							
MSP •	≻		- CLE					
Minneapolis · T	'hu, Jan 11							
Scheduled dep	arture	Terminal	Gate					
3:05 pm		1	C11					
Cleveland · Th	u, Jan 11							
Scheduled arriv	val	Terminal	Gate					
6:10 pm		-	B2					
Cleveland to Minneapolis – DL 4841 SCHEDULED 6:45 pm → 8:05 pm								
Showing local airport	times		Feedback					

Assistant

Assistant

Route Coverage Tool - Leverage insights from user queries

Flights Route Coverage Tool (Beta)

Opportunity Finder: Last 90 Days

Filters	Account	Account •		count • Volume •				Opportunity Score:	Covered: Yes	
	Language		Device		NDOD		Nonstop Service		Domestic	
	Origin	Country		Region			DMA		City	
	Destination	Country		Region			DMA		City	

Competitive Routes

Performance over last 90 days for in-network routes limited to 0 and 1 stop flights. 2 stop flights are included if they have a circuity of 1.6 or less and a duration rank of 50%. Only routes with 5 or more operating carriers are displayed.

	Origin City	Destination City	NDOD	Routes	Queries (R)	Impression Coverage	Click Coverage	Capacity Share	Click Gap
1.	Perth	London	LON-PER	PER-LHR, PER-LON	80,000	0.2%	+0.0%	9.2%	9.2%
2.	Boston	Chicago	BOS-ORD	BOS-CHI, BOS-ORD	60,000	0.9%	0.6%	7.3%	6.7%
3.	Boston	Los Angeles	BOS-LAX	BOS-LAX	60,000	1.4%	1.2%	19.3%	18.1%
4.	London	Sydney	LON-SYD	LGW-SYD, LHR-SY	50,000	12.4%	0.8%	17.4%	16.6%
5.	Chicago	Boston	BOS-ORD	CHI-BOS, ORD-BOS	50,000	0.7%	0.4%	7.0%	6.6%
6.	Warsaw	London	LON-WAW	WAW-LGW, WAW-L	50,000	2.8%	0.5%	6.2%	5.7%
7.	Dubai	Manila	DXB-MNL	DXB-MNL	50,000	3.9%	1.9%	8.6%	6.6%
8.	Paris	Bangkok	BKK-PAR	CDG-BKK, PAR-BKK	50,000	0.1%	+0.0%	5.9%	5.9%
9.	Paris	Los Angeles	LAX-PAR	CDG-LAX, PAR-LAX	50,000	15.5%	5.7%	31.1%	25.4%
10.	Guadalajara	Tijuana	GDL-TIJ	GDL-TIJ	40,000	8.6%	1.0%	22.5%	21.5%
11.	Brisbane	London	BNE-LON	BNE-LHR, BNE-LON	40,000	1.1%	0.3%	57.9%	57.5%
								1 - 50 / 2325	< >

Carriers May Apply Machine Learning to Gain Business Insights

Google Cloud Machine Learning Workflow

Flights Data & Google Cloud Infrastructure

Flight Data

• Fares, schedules, availability, pricing, flight status.

Big Query

- Enables storage of petabytes of data and slicing & dicing data across many dimensions.
- Cloud Data Flow Fully managed service for developing and managing and executing a wide range of data patterns.

Cloud SQL

• Query petabytes of data to find answers to questions like, which markets have the lowest rate of selling, or order markets and flights legs by load factor.

Cloud ML

• Lets developers and data scientists build and run superior machine learning models in production.

Cloud AutoML

• Enables developers with limited machine learning expertise to train high-quality models specific to their business needs.

Conclusion

Machine learning is making a difference for Google Flights users and airline partners.

Leveraging AI to drive commercial success

Jaime Zaratiegui, Director Data Science, Accelya Group

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

Leveraging AI to Drive Commercial Success

Jaime Zaratiegui Director Data Science @Accelya

> IATA ADS 2019 27 June 2019

Know Your Customer

Know Your Customer?

4.3 bn passengers 2018 worldwide

Know Your Customer?

Predict with AI

Predict with AI

Thank you for your time

accelya

IATA **AVIATION** DATA **SYMPOSIUM**

ATHENS, GREECE 25-27 JUNE 2019

Sponsored by:

High-performance Computing: Aviation Use Cases

Massimo Morin, Head, Worldwide Business Development, Travel, AWS

ATHENS. GREECE 27 JUNE 2019

Sponsored by Openlaw

The Power of Data HPC & ML/AI Use Cases

Massimo Morin, Head, AWS Travel 27th June, 2019

Long time ago...

an announced and an announced and and

The airline industry is a complex business

AWS is Here to Help: The Amazon ML Stack

AI SERVICES	Easily add intelligence to applications without machine learning skills VISION DOCUMENTS SPEECH LANGUAGE CHATBOTS FORECASTING RECOMMENDATIONS
ML SERVICES	Build, train and deploy machine learning models fast DATA LABELING PRE-BUILT ALGORITHMS & NOTEBOOKS ONE-CLICK TRAINING & DEPLOYMENT
ML FRAMEWORKS & INFRASTRUCTURE	Flexibility and choice, high-performing infrastructure SUPPORT FOR ML FRAMEWORKS COMPUTE OPTIONS PURPOSE-BUILT FOR ML

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

AWS is Here to Help: The Amazon ML Stack

AI SERVICES	0-	CTRACT	SPEI	ECH	LANC A T TRANSLATE	GUAGE	CHATBOT	FOREC	ASTING
ML SERVICES	Grour	BUILD Ground Truth ML/AI Marketplace			AMAZON SAGEN TRAIN ete training & f eo model compi forcement Lea	cuning iler	DEPLOY One-Click Deployment		
ML FRAMEWORKS & INFRASTRUCTURE	FRAMEWORK TensorFlow mxnet Pytörch		INTER G K K	JUON	INFI EC2 P3 & P3N EC2 C5		FRASTRUCTUR	GREENGRASS	ELASTIC INFERENCE

Qantas' Constellation

The scalability of cloud computing, and ingestion of rich datasets from external sources, allows Qantas to continually assess and adjust planned paths en-route.

This delivers **increased safety** through more **accurate fuel prediction** and **efficiency via fuel savings**.

Results to date for Qantas include **0.6 percent lower fuel burn** per flight, leading to lower carbon emissions.

> Ben Vogel, Editor, Jane's Airport Review

Qantas' cloud-based flight sim saving millions in fuel

The results are in...the winners of the Jane's ATC Awards have been revealed

Air New Zealand's Carma

... this allows us to move more than ever before with the same amount of aircraft (adding more than 40 tonnes of capacity a day).

Jonathon Dale Manager Commercial Insight, Air New Zealand

https://www.linkedin.com/feed/update/activity:6473266710744039424/

AIR NEW ZEALAND

- Flag carrier of New Zealand
- 65 planes serving 51 destinations
- Cargo Advanced Revenue Management Assistant (CARMA): model predicting the likelihood of cargo freighting showing up on day of freight
- AWS enabled to leverage the managed services to carryout the data science models, from the ingestion, ETL, Modeling, Database to the output results.
- Carma: the real reward is seeing how we can expand volumes for supply chains of our Exporters across the world, providing more accessibility and reliability Jonathon Dale

Revenue increase by shipping more and being more efficient

Marketing and Promotions to shift demand

Forecasting and Planning

Delivery turn around

Capitalize on Your ML/AI R&D

Y aws marketplace

Machine Learning & Artificial Intelligence

Build intelligent applications with machine learning and data science software

Algorithms & Models - NEW

Data Solutions

Machine Learning Solutions

Intelligent Solutions

Benefits of Machine Learning in AWS Marketplace

Scalable

Accessible and Fast

Pay-as-you-go

Conclusion

- 1. Airline business is complex = lots of opportunities
- 2. AWS has the most comprehensive ML/AI ecosystem
- 3. Start small and experiment a lot
- 4. Capitalize on your investment
- 5. We are here to help

Leveraging Data & Machine Learning

Moderator: Tanya Beckett, Presenter, BBC News

Kevin O'Sullivan, Lead Engineer, SITA Lab

Ian Painter, CEO and Founder, Snowflake Software

Ido Biger, Chief Data Officer, EL AL Israel Airlines

Virender Pal, Chief Digital & Innovation Officer, flynas

Ingredients to enable efficient and effective use of Al

Minna Kärhä, Head of Data, Finnair

ATHENS, GREECE 27 JUNE 2019

Al Lab

The Ingredients Awareness Data Culture Value

Awareness

Understanding what AI is <u>AND</u> what it is not, to prevent unrealistic expectations and disappointment

Understanding the potential – by knowing the real business challenges

Understanding the required working methods – data science work cannot (*usually*) be done in a waterfall project and gaining real results will take time

Airlines are actively looking for opportunities around AI

f airlines with AI use cases currently implemented or planned by 2021.

Al solutions used by industry:

- ✓ Price optimization
- ✓Market discovery
- ✓ Predictive maintenance
- ✓ Feedback analysis
- ✓ Customer comms automation
- ✓Crew fatigue analysis
- ✓ Delay prediction
- ✓Fuel optimization
- ✓Catering optimization
- ✓ Social media analysis

Identified potential for Finnair

Identifying what data is – it is more than the Data Warehouse

Knowing the inventory – what do we really have

Governing the data assets to ensure there is enough quality data

Ensuring data is accessible for anyone who needs to use it (in a secure and compliant way)

Various forms of data is created in daily operations for example

Flight planning- & operations

Workforce
Employee development and -feedback

FleetCapacityMaintenance

 Network planning and – operations
 Partnerships

Loyalty profilesCustomer's transactions

BaggageCargo

Digital channels usageMarketing activities

Customer service

Culture

Data Science cannot be built in a separate "Data Science" –silo. The work needs to be embedded to the core business processes – and organization needs to be open for these new roles (data scientists, data engineers, visual story tellers, service designers...) to invest on them – and to learn from them

Data Science is a continuous, cross-functional journey – company culture (and governance) needs to be ready for agile experimenting

Reusability provides agility - Data Science community needs to also collaborate across projects

Al development lifecycle

Value

Value of AI is only realized when the solutions are in active use and provide business value in forms of efficiency, better decisions, smoother journey for customers or emloyees...

Value also comes in a form of **company brand and public image** – AI needs to be compliant, ethical, transparent and continuously monitored

To summarise: Al provides opportunities for advanced use of company's data asset for business value

Only well managed data asset can provide quality results – the existing data inventory might surprise

Like any tool, also advanced analytics requires people with appropriate skills to use it – and organization that welcomes these new skills

Focus on the real business challenges – embrace agile and be brave to get started with small experiments

IATA **AVIATION** DATA **SYMPOSIUM**

ATHENS, GREECE 25-27 JUNE 2019

Sponsored by:

Predicting Passenger Choices considering Irrational Behavior

Rodrigo Acuna, Head of Al Research, Amadeus

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

Predicting Passenger Choices Considering Irrational Behavior

> IATA ADS, June 26, 2019 Rodrigo Acuna-Agost Head of AI Research, Amadeus **AMADEUS**

Credits: Collaboration Academy + Industry

amadeus

imagine an airline's **CEO** when we tell her

"we can predict travelers" choices"

Some applications

dynamic offering

recommender systems

our engine

Solved

More is better

why we cannot reach 100% accuracy?

Brain

An error has occurred. To continue:

Press Enter to return to Windows, or

Press CTRL:ALT:DEL to restart your computer. If you do this, you will lose any unsaved information in all open applications.

Error: 0E : 016F : BFF9B3D4

Fress any key to continue _

there are more than **100** studied cognitive biases

Reference: Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis Joel Huber, John W. Payne and Christopher Puto Journal of Consumer Research, Vol. 9, No. 1 (Jun., 1982), pp. 90-98

Preference Dimension 1 (eg., **Discount**)

Three Experiments

Surveys: Fare Family Choice

Impact in Choice Prediction accuracy?

Survey Data 400k data points

Online users: Itinerary Choice

Impact in Conversion?

Online users 30000 user sessions

Live Lab: Flight Choice

Understanding better: Fully controlled experiment in the lab

> Experimental Economics Lab 100 people

Three Experiments

Surveys: Fare Family Choice

Impact in Choice Prediction accuracy?

Survey Data 400k data points

Online users: Itinerary Choice

Impact in Conversion?

Online users 30000 user sessions

Live Lab: light Choice

Understanding better: Fully controlled experiment in the lab

Experimental Economics laboratory 100 people

1) Fare Family Choice Impact in Choice Prediction Accuracy?

Results: Classification Accuracy of Predictions

Three Experiments

Surveys: Fare Family Choice

Impact in Choice Prediction accuracy?

Survey Data 400k data points

Online users: Itinerary Choice

Impact in Conversion?

Online users 30000 user sessions

Live Lab: light Choice

Understanding better: Fully controlled experiment in the lab

Experimental Economics laboratory 100 people

2)Impact in Conversion? (website)

Two variations

Results: does decoy improve conversion?

8.00% 7.50% 7.00% 6.50% 6.00% 5.50% 5.00% No decoy Decoy

Conversion Rate

Three Experiments

Surveys: Fare Family Choice

Impact in Choice Prediction accuracy?

Survey Data 400k data points

Online users: Itinerary Choice

Impact in Conversion?

Online users 30000 user sessions

Live Lab: Flight Choice

Understanding better: Fully controlled experiment in the lab

Experimental Economics laboratory 100 people

3) Experimental Economics Lab

Setup:

- Experimental Economics laboratory (University of Cote d'Azur)
- 1 hour sessions

Data:

 10 repeated choices x 100 people
 = 1000 observations mostly students

Incentives:

- 1/10 participant is paid (100-200€)
- Selected candidates "live" the flight experience they choose to get paid. Ex: come in 2 weeks to wait 1 hour in a room without cell phones, etc

3) Preliminary Results

Collected Data

Preliminary results are not conclusive (35% of data collected)

Conversion Rate(*)

(*): note that the experiment is calibrated to obtain relative high values of conversion rates.

AI RESEARCH AMADEUS

Turnaround Management Optimization using Al

Stephane Cheikh, AI Program Director, SITA

ATHENS, GREECE 27 JUNE 2019

AI Lab

\$39b = flight delays cost to airlines \$7.4b is related to turnaround \$420m saved directly by airlines, with technology & collaboration*

Turnaround Costs Why should the industry care?

Lack of digitization, transparency and efficient collaboration

A.R. ALLANGE

OVENIBLOK HOLELOW NOI CASINO

Turnaround Black Box Where is the issue coming from?

VISS ·····

Automate timestamps gathering A single source of trustable data

Turnaround Timestamps Using Computer Vision to extract "accurate" timestamps

Smart annotation Timestamps confidence levels

Turnaround Timestamps Using Computer Vision to extract "accurate" timestamps

Aircraft	0
Pax Boarding Connected	0
Baggage Connected	
Tug/Chocks Connected	0
Time Stamps	
Aircraft	00:23:03
Pax Boarding Connected	00:23:03
Baggage Connected	00:23:03
Aircraft	00:43:03
Pax Boarding Connected	00:43:03
Baggage Connected	00:43:03
Aircraft	00:18:03
Pax Boarding Connected	00:18:03
Aircraft	00:17:03
Aircraft	00:26:03
Pax Boarding Connected	00:26:03
Bangage Connect	

Current Status:

DASHBOARD

18min Average Time to Load bags

- Aircraft movement (AODB)
- Passenger journey at airport (check-in, security, boarding)
- Baggage tracking (bag check-in, processing & loading)
- Fix and mobile resource allocation (AMS)
- Air traffic control messages

In ter

Turnaround Timestamps SITA is well positioned – access to diverse data to be meshed with timestamps

Turnaround Digital Twin Ability to view live turnaround via an immersive platform

SITA

🐍 Remove PRM 🔞 Cancel Offload Bag			🧾 Start Offload Bag											
	Overview	Transfer		Baggage	2	<u> </u>								
ID	Dependencies	Service	Duration	Start	End	12:50	13:00 13:00	13:10 13:20 13:30	13:40 13:50	14:00) 14:00 14:10	14:20	14:30 14	4:40 14:	15:00 :50 15:00
3	2	OnBlocks	0 mins	02Sep16 13:20	02Sep16 13:20			OnBlocks ۲						,
4	3FS+2 mins	Cargo Door Open	0 mins	02Sep16 13:22	02Sep16 13:22			Cargo Door	r Open					
5	3FS+2 mins	Cabin Door Open	0 mins	02Sep16 13:22	02Sep16 13:22			Cabin Door روا	r Open					
6	5	Deboarding	10 mins	02Sep16 13:22	02Sep16 13:32			Deboarding						
7	6	PRMARR	10 mins	02Sep16 13:32	02Sep16 13:42									
8	5	EK888 / PAX C:55 / PAX M:23 ,	15 mins	02Sep16 13:22	02Sep16 13:37			♦ EK888 / PAX C	C:55 / PAX M:23 /	Dep Gate: C37				
9	6,7	Catering	10 mins	02Sep16 13:49	02Sep16 13:59				Cateri	1				
10	6,7	Cleaning TR	15 mins	02Sep16 13:44	02Sep16 13:59				Cleaning T					
11	4	Unload	30 mins	02Sep16 13:22	02Sep16 13:52			Unload	J					
12	3	Fuelling	15 mins	02Sep16 13:20	02Sep16 13:35			♦ Fuelling —						
13	3	Water Service	10 mins	02Sep16 13:20	02Sep16 13:30			Water Service						
14	11	Load	30 mins	02Sep16 13:52	02Sep16 14:22					d	_	\neg		
15	14,16	Cargo Door Closed	0 mins	02Sep16 14:32	02Sep16 14:32						ſ	Cargo ر	Door Close	ed
16	14	Offload Bag for missing PAX	10 mins	02Sep16 14:22	02Sep16 14:32						Offloa	ad Bag for mi	sing PAX	
17	9,10	TRF 001 / PAX C: 33 / PAX M :3	15 mins	02Sep16 13:59	02Sep16 14:14					TRF 001 / PAX C	: 33 / PAX	A :32 / C23		
18	9,10	TRF 002 / PAX C: 3 / PAX M :44	15 mins	02Sep16 13:59	02Sep16 14:14					♦ TRF 002 / PAX C:	3 / PAX M	:44 / Arr Gate	a22	
19	9,10	TRF 03 / PAX C: 3 / PAX M:7 / /	15 mins	02Sep16 13:59	02Sep16 14:14					TRF 03 / PAX C:	3 / PAX M:7	/ Arr Gate X)3	
20	10,9	7 PRM	15 mins	02Sep16 13:59	02Sep16 14:14					Carl PRM				
21	9,10,20	Boarding	15 mins	02Sep16 14:14	02Sep16 14:29					G	arding	h		
22	21	Cabin Door Closed	0 mins	02Sep16 14:29	02Sep16 14:29						F F	Cabin Do	or Closed	
23		Off Blocks Scheduled	0 mins	02Sep16 14:55	02Sep16 14:55						ſ			Off Blocks s
24 مېر دىن	12.13.15.22FS+2.m	Off Blocks	0 mins	,02Sep16 14:32	02Sep16 14:32	i and and all and		in and the second			Desit	÷		a start and

Turnaround Manager – Activity Flow Delivers aircraft operation overview for Airlines operating a Hub or FS GH

SITA

Value-add integrator for turnaround data

Generating / capturing "raw" turnaround events data, cleansing / normalizing / aggregating data, enriching these data, **transforming these data into insights / information**

STA

Historical: A single source of trustable data. **Real time**: Transparency, collaboration efficiency, support quick decisions **Future**: Predict patterns, avoid disruptions and delays before they happen.

Turnaround Optimization How are we going to address this challenge?

Alaska's Transition to Real-Time Algorithmic Personalized Experiences

Matt Hahnfeld, Software Engineering Manager, Alaska Airlines

Xavier Lucas, Software Engineer III, Alaska Airlines

THENS, GREECE 27 JUNE 2019

Alaska's Transition to Real-Time Algorithmic Personalized Experiences

Matt Hahnfeld, Software Engineering Manager Xavier Lucas, Software Engineer III June 27, 2019

Alaska AIRLINE

Highest in Customer Satisfaction Among Traditional Carriers in North America, Twelve Years in a Row.

Alaska.

📕 Feb 24, 19, 9:44 pm

Considering Alaska Airlines MVP Gold Tattoo

StephanP37

Original Poster 😵

Join Date: Dec 2018 Programs: Alaska MVP Gold 7K, MARRIOTT PLAT PREMIER WITH AMBASSADOR Posts: 38 So I obviously have been known like all of us to be an Alaska junkie. I had the idea recently to get an Alaska MVP Gold seventy five K tattoo. Thinking maybe also adding underneath my first year at the status with a dash and then leave it blank for however many years I am fortunate enough to keep the level.

Am I insane? Cool idea, dumb idea? I won't be offended please let me know your opinions and if anyone wants to get one with me let me know lol!

Tech at Alaska is...

de

Contact Last Name	e First Name I	Aiddle Nam	Gender	Date	Member Statu	ıs E-mail	Primary	Suffix		
1-24J LUCAS	XAVIER		Male		Active	DEA	_			
1-240 200/10	ANTER		Male	0/1	Active	DLA				
Public Notes + 💼 🔍 🏟 1 - 3 of 3 🖍										
	~				\bigcirc					
Created		Created B	у Ту	ype						
10/19/2015 11:42:	32 PM	SADMIN	А	rchivin	g					
10/19/2015 08:59:	52 PM	SADMIN	А	rchivin	g					
10/8/2015 10:28:45 AM SADMIN					2008 CNV					
•										
Legacy F	Public Com	ments	م		🔅 1 - 7 d	of 7 🖌 🖉				
User (Created Date Time			Comm	ent Text					
FFX91520		ACT=00000000 ACC=00000000 RED=00000000 NET=0								
FFCRDEXT 3	(CREATED ALASKA MVP CARD, EXPIRES 2008/12.								
FFX08010 3	:	2007/2008 MVP MEMBER BASED ON 2007 AS/QX/NW								
MMCMULL :	3/23/2007 01:41:5	PM		mbr ar	ngry that he die	l not recei	ve mvp bonus mi	les for		
MMCMULL :	3/23/2007 01:41:5	PM	;	anc-se	a flt Mar20, 20	07. hba h	e would not receiv	/e		
MMCMULL :	3/23/2007 01:41:50	PM		bonus	miles until liste	d as mvp	by computer. how	vever,		
MMCMULL :	3/23/2007 01:41:50	PM	t	for css	, i added 1448	miles to h	is acct.			

From the archives.

Two years ago in Miami.

On-demand personalization.

This is where we started to have fun.

Instant Gratification **Requires Thinking Differently**

2019 Merkle HelloWorld Loyalty Report Reveals 54% of Consumers Want Swifter Reward

Home > News & Press Information > Press Releases > 2019 Merkle HelloWorld Loyalty Report Reveals 54% of Consumers Want Swifter Reward Redemption

February 25, 2019 Southfield, MI

HelloWorld, a Merkle company, and a leading digital marketing solutions provider for the world's largest

Alaska AIRLINES

Instant Gratification Requires Thinking Differently

NONEY CONSTANTING CONSTANTING

Instant Gratification Requires Thinking Differently

arketing solutions provider for the world's larges

Markets

Citigroup Kills Some Card Perks as It Unveils New Reward Options

By <u>Jennifer Surane</u>

June 25, 2019, 5:04 PM GMT+3 Updated on June 25, 2019, 7:00 PM GMT+3

► Citi will end price-protection, trip-insurance benefits

► Bank to introduce real-time rewards redemption for some cards

"A recent Citigroup survey of 1,000 cardholders found that customers were 86% more likely to redeem rewards points if they could be used in real time."

Real-Time Requires Thinking Differently

Alaska

Earning miles the new way.

essee Verizon LTE	5:27 PM	1 46% 💷
	Trips	+

Confirmation
San Francisco, CA

Confirmation Seattle, WA

Real time. Real guest wins.

- Trips
- Acquisition
- Inflight
- First Class Upgrades
- Revenue Mgmt

"Just a note of thanks as I've noticed credit for my flights getting added to my account and visible on the app much sooner than it had in years/months past. I appreciate the improved turnaround as it reinforces (even if just subliminally) customer loyalty. Nicely done!"

- Actual Customer

Allaska

The future is bright.

Thank you.

Matt Hahnfeld, Software Engineering Manager Xavier Lucas, Software Engineer III Loyalty and Non-Flight Partners

© 2019 Alaska Airlines - Confidential

How to use AI and modern architecture to create an automated agent

Brian Lewis, Chief Technology Officer, OpenJaw

THENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJav**

How to use AI and modern architecture to create an automated agent

Brian Lewis Chief Technology Officer

brian.lewis@openjawtech.com

OpenJaw Technologies

Galway — Delivery Centre

Global Customer Base

OpenJaw: three platforms

Data Driven Customer Centricity

Dynamic Offer Creation

Intelligent Chat Interfaces

OpenJaw: three platforms

Data Driven Customer Centricity

Dynamic Offer Creation

Intelligent Chat Interfaces

'Intelligent Conversational Interfaces' ?

The Roadmap for Conversational Intelligence

3 Stages of Maturity

decision tree or rules based

Source: NLP, AI, Machine Learning

Source: NLP, AI, Machine Learning, PSS, Booking, DCS, CRM data

#1 Interaction

Feature	Value to Organisation	Value
General Advisory (FAQ) Agent w. Escalation	Decrease volume to call centre	Quicke
Flying with Us	Brand experience	Quicker r comr
MMB	Decrease call centre volumes	Quicker r comr
Help FAQs	Decrease call centre volumes	Quicker r comr
Contact Us	Route calls to appropriate agents, cut down wastage	Find correc ⁻

Value to Passenger Quicker response time

Quicker response times to common questions

Quicker response times to common questions

Quicker response times to common questions

Find correct agent more quickly.

#2 Intelligence

Feature

Deep linking system to generate URLs to link to MMB, Check-in and Flight Sales MMB Conversational Flow

Online Check-in Conversational Flow

Value to Organisation

Increase conversion by directing to correct web page.

MMB handled via a conversation interface

Check-in via conversation interface

Value to Passenger

Precise answers

Friction reduction; fast results

Faster and easier to find complete check-in experience

Flight Selling Conversational Flow

Enable flight selling with specific offer page

Engage customer with natural language in a private message flow

#3 Integration

Value to Organisation

Decrease volume to call centre, provide conversational opportunity for upsell

Value to Passenger

Ability to check-in online via Facebook Messenger or WhatsApp

Flights Status, FIFO, and Regulatory Details

Feature

Check-in w/ Ancillary Sales

Reduce call centre volumes

Quicker response to queries.

MMB Baggage and Seat Upsell

Decrease call centre volumes and Reduce friction in seat sales bag increase baggage and seat sales sales

How do we use Al?

Teach not tell

Machine Learning

Programming

23. Rewrite the following switch statement as a nested if statement using a series of else...if statements: string birdName; switch (birdName) case "Pelican": Console.WriteLine("Lives near water."); break; case "Cardinal": Console.WriteLine("Beautiful in the snow."); break; case "Owl": Console.WriteLine("Night creature."); break; case "Eagle": Console.WriteLine("Keen vision"); break; case "Flamingo": Console.WriteLine("Pretty and pink."); break; default: Console.WriteLine("Can fly."); break; }

Measure and monitor accuracy

Improve the data, fix misclassifications

Architecting the eco-system

Middleware

Spring Boot based. 'Core' of the system Integration and orchestration layers Configuration Queuing, Databases, Caches

Console UI

Built using React & Redux ECharts visualisation framework Material UI

Console UI

Chat Server

Built in Node JS Simple to embed Supports attachments Connects via Rabbit MQ

â

Deployment

Deployed in Kubernetes in AWS. Currently migrating to EKS using Helm & Tiller. Deployed from GitLab repo proxy Dashboard UI to see status of deployment/pods. Errors/problems sent as messages to slack. Prometheus metrics server & Grafana for visualization.

Conclusions

Maturity level - Decide where to start Implement Training Metrics Fully Instrument the solution Gateway approach to handle new channels Architect for the complete eco-system Plan to deploy and run at scale Brian Lewis, Chief Technology Officer

Thanks for listening!

brian.lewis@openjawtech.com

BrianLewis68

@BrianLewisCTO

www.linkedin.com/in/brian-lewis

A TravelSky Company

Project DeepSky: A playful approach towards Reinforcement Learning in Aviation

Dr. Dr. Mussie Beian, Senior Data Scientist, zeroG

Project DeepSky: A playful approach towards Reinforcement Learning

IATA Aviation Data Symposium 2019 Greece, Athens

Dr. Dr. Mussie Thomas Beian – Senior Data Scientist

ZEROG

Combining the best out of two worlds: zeroG & Lufthansa Systems

2015

Founded by Lufthansa Systems

Dynamic start-up to keep up with technical developments

People work at zeroG With a very diverse and international background

Assignments within the aviation world

Working in both commercial and operation areas

zeroG: a new breed of digital tech start up. We help airlines turn their data into value through advanced analytics and digitization. Our team comprises of young, dynamic & highly international technology professionals who bring along airline know-how & analytics expertise like two sides of a coin. In a nutshell, we support airlines through their digitization journey by unlocking the intrinsic power of data.

AI within Aviation How game-like situations will transform the aviation world

What is Artificial Intelligence?

What is Artificial Intelligence?

A set of analytical technologies that augment human cognition.

The next step in AI

Increased computer power and data availability enables AI to go beyond insight and foresight, towards systems that act, learn, and adapt on the user's behalf.

We take you on an AI Journey: Towards systems that act, learn and adapt on the user's behalf

Many isolated AI use cases have been realized within the aviation world, but Reinforcement Learning is a revolutionary green field!

How does Reinforcement Learning work?

IMPACT: agent independently develops strategy to optimize actions towards highest possible result

Example 1: Alphabet's (Google's) AlpaGo

Key Elements

Al Agent Alpha Go

Environment

Chinese game Go – the most complex game in the world!

Observation Input

Game environment, position of stones on the board, previous moves

KPI Driven Reward System

Beat opponent!

AlphaGo now beats the best human Go-Player in record time

Example 2: zeroG's DeepSky

Key Elements

Al Agent DeepSky

Environment

Air Bucks – an airline management computer game.

Observation Input

Bank balance, fleet size, landing rights, date, available airport, company worth, etc.

KPI Driven Reward System

Build an airline that will generate biggest company worth within four (game) years.

Situational Sketch

DeepSky now beats every human airline manager in Air Bucks

After basic research and developing an own AI, zeroG is about to implement the first use cases

ZEROG

Thanks for your attention! zerog.aero services and has been her have been have

And and a supervised in the su

Statement of the statem

Color D. Color of the same same

And a second sec

And the second s

and the second se

the state of the second st

Contact

Senior Data Scientist Dr. Dr. Mussie Beian

Phone: + 49 151 589 218 12 Mussie.Beian@zerog.aero Linkedin: Dr. Dr. Mussie Beian

Al driving Revenue Streams

Maria Toso, Manager, Pricing and Revenue Management Intelligence (PRMI) group, Copa Airlines

ATHENS, GREECE 27 JUNE 2019

Sponsored by: **OpenJaw**

AGENDA

COPA AIRLINES

History and growth of Copa Airlines

COPA AIRLINES + AI

CopaAirlines

How is Copa Airlines using Al?

AI DRIVING REVENUE STREAMS

What have been the tangible results of these AI applications?

ARTIFICIAL INTELLIGENCE

What is Artificial Intelligence?

" Any type of computer software that engages in humanlike activities, including learning, planning and problem solving"

COPA AIRLINES + MACHINE LEARNING

Machine learning is one of the most common types of artificial intelligence in development for business purposes today

CLASSIFICATION ALGORITHMS

Let's understand how classification algorithms work

With the characteristics of an apple determined, we can classify if any fruit is an apple or not

CLASSIFICATION BUSINESS CASES

Classification of sold-out too soon flights

Co-Brand credit card acquisition in loyalty

Extrapolate the classification and instead of an apple imagine a flight What would you need to predict if a flight will sell out or not?

Flight No	Origin	Destination	Departure	Remaining Seats	Sold-out flight?
1200	PTY	SFO	08/01/2019	0	1

- Define a sold-out to soon flight
- Manipulate training set so it can easily aid in prediction of future sold-out flights

Determine the characteristics of a sold-out too soon flight. These characteristics can include anything related to a flight or even complex relationships between variables

Once the variables are selected, test several classifications algorithms:

With current characteristics of a future flight, it is expected that the flight will sell-out too soon

A look into the implementation and results

Copa Airlines launched its own loyalty program: **ConnectMiles** designed to strengthen Copa's relationship with its frequent flyers

Supervised look-alike-classification model that:

- Identifies potential credit card holders in the countries where Copa Airlines offers a co-brand
- Creates acquisition tool to accelerate growth for new partners
- Identifies potential co-brand expansions where Copa Airlines does not have presence

The first step is to understand the customer

The second step consists of developing a model that identifies potential customers

A look into the implementation and results

AI DRIVING REVENUE STREAMS

Artificial intelligence gives us the ability of not only generating revenue streams but also:

Increase productivity and operational efficiencies Save time and money by automating routine processes and tasks

Make faster business decisions Avoid mistakes and 'human error'

Achieve cost savings Increase revenue by identifying and maximizing opportunities

THANK YOU!

0.

Q

 \bigcirc

Maria Agustina Toso mtoso@copaair.com

Key Takeaways and Closing Remarks

Houman Goudarzi, Head of BI & Industry Engagement, IATA

ATHENS, GREECE 27 JUNE 2019

Al Lab

IATA **AVIATION** DATA **SYMPOSIUM**

ATHENS, GREECE 25-27 JUNE 2019

Sponsored by:

