

Ericsson – global logistics Challenge

Equivalent to 28,000 TEU, enough to fill 6 Panamax carriers

Migrated from 20% to >80% sea freight in 6 years

outbound freight and

logistics

Local supply chain network:

- More than 1400 warehouses
- More than 470 different Service Providers

Internally high visibility Track & Trace in OWN IT systems in place

Externally No visibility

Data Sharing Between Companies Not in place

Ericsson Air-freight reality

Shipments from Sweden to Germany (1000 km) by air took as much time as biking (biking 8 hours a day)

- Information traveling on paper at same speed as the cargo
- Paper/document flow a major issue
- Actors not connected digitally - low visibility

The volume of paper shipped by Ericsson each year fills a

747 freighter

multi-party flow with Few connected Receivers demanding more visibility.

What problem to solve?

Limited visibility on what is happening in supply chains

- Multiple stakeholders not connected, paper based data
- Deliveries unpredictable, planning difficult, surprises many, safety stocks high, lead times long, costs high

Poor quality control.

- Goods stolen, damaged, lost etc.
- Regulatory compliance not automated and problematic
- Lack of accountability for Logistics Service Providers

Core components of a solution:

Common shared data pool

- Information sharing between all actors
- Automation of administration and manual work
- Optimization of logistics across end to end chains
- Participation within seconds, all actors
- **Real-time monitoring**
- IoT device, data mgt for logistics
- Integrated with common data share across the chain

Who benefits?

Consignees feels problem, Shippers pays and feels the pressure from the consignees, all will benefit

Digitization Logistics - Ericsson In-bound Logistics to Radio Sites

Main Use Cases:

- > Where are all the deliveries for my Base Station?
- > When will they arrive?
- > Can I deliver when I need it?
- Can I automate my handling events?
- > Manage deviations, events, alarms, information etc.
- QR code Unique Identifiers on all objects
- As URI anyone can participate, get info.

Details documentation and other information

i.e. Information, pictures, report damages...

Using connected pallets

Knowing what is on each pallet

Proof of delivery through app – can be used by any partner

Requirements on Airfreight

- > Seamless digital multi-mode
 - > Enables real-time monitoring
 - Supporting floating inventory
 - > Paperless and adaptable while in transport
- > Re-routing made easy
- > Air-freight premium needs to have end-2-end gain

Is smart Logistics Next?

- In order to prove business value and ensure 5G meets real industry requirements, Ericsson factories are fast-tracking the introduction of a new generation of smart manufacturing.
- > Developing and implementing the first 5G and Industrial IoT systems in a real manufacturing environment allows this new wave of tech enablers to reach maturity more rapidly.

The digital factory

More information

Thomas van Bunningen Intrapreneur

IOT Logistics

Ericsson

Torshamnsgatan 21, Kista, Sweden Mobile +46 76 1050632 thomas.van.bunningen@ericsson.com www.ericsson.com

http://www.ericsson.com/thinkingahead/innovation

Digitalisation is...

From paper to data - eFreight is one pre-requisite to unleash digitalisation potential in airfreight

Exploitation of data drives value – software is a production factor

Natural Language Processing

Cognitive Agents

APIs connect

Standards accelerate

Think Data – Become Digital!

- Drive paperless transport.

 Sell online.
- 2 Value data.

 Generate value with software.
- Get connected.
 Facilitate data standards.

Artificial Intelligence program

IATA ADS Berlin June 19th 2018

AIR FRANCE KLM GROUP

314 destinations in more than 116 countries

80 595 people

552 aircrafts

2 000

25,8 Billions € in 2017

Aircrafts (E&M)

200 Airlines are customers worldwide

98,7 millions of passengers in 2017

Al program: an IT initiative Lead by CIO Office and OR/DS dept

Reinforce AFKL value proposition by offering cognitive services to customers and employees

Impact AFKL profitability substantially by optimizing processes and transform organizations

Create awareness on Al through use cases

Coordinated different organization around similar initiatives

Reinforce internal capabilities

Introduction to Repair

Remaining capacity after passengers is allocated to cargo

Sometimes, shipments cannot go in their associated flight: Repaired bookings

Multiple causes:

- Late shipment
- Cancelled flight, strike, ...
- Wrong overbooking
- Priority bookings or previous repairs

Repairs must then be reallocated to new flights: Time consuming task, no previously existing process

Now to reallocate the repairs?

Introduction to Repair

Todav:

- Analysts are doing it manually
- Time consuming (10-15% of their time)
- Not efficient (multiple application to dig into)
- Solution not optimal

Opportunities:

- Let analysts focus on added value tasks
- Time saving
- Good quality of solution
- Better quality of service

Reinforcement Learning

Reinforcement Learning allows machines and software agents to automatically determine the ideal behavior within a specific context, in order to maximize its performance

Cargo Smart Repair

Historical data

First idea was to look at historical data to apply Machine Learning algorithms; but it was not usable regarding the disparity in the process

• We needed to explore a new domain: simulations

Simulations

- Create fictive flights
- Create fictive bookings/events
- Environment representation :
 - State: Booking configurations and available capacities of flights
 - Actions: Remove booking of the category volume and put it in a backlog
 - Rewards: Penalty corresponding to the removed booking category

Timeline & Results

Timeline

- First discussions in oct 2017 to define the use case
- Historical data exploration in nov-dec 2017
- Modelisation and simulations
 3 months jan to march 2018
- Proposal in april 2018

Nexts steps

- More training, tuning of the model, modelisation
- Run a pilot this summer on selected flights
- Implement the solution to give an advise to analyst before the end of the year : real time data + integration

Connecting the air freight industry to increase its value proposition

Henk Mulder Head, Digital Cargo

IATA Aviation Data Symposium & Al Lab

Berlin, 19-21 June

Internet of Logistics

New on Old

Immersive data ocean

010111(10101	01010 1	101010101	01010101	010101010	10101010	10001100	110 1101	01000101	0101010	0110	110101	1010100	101100	101010010	1010010	11010111	01001010	10101010	101011100	101010101	001100101	010101010
				101010101		01010001											-6					101010101
	1010')	10101	1010101	10101010	10101010		001	1010100			`111C^											100101010
101010° 101°		01/ 1011		J101c101)1 ,100)101)100	J10 .								101011100		^^1100101
010101(10001 101010 ⁻)1010		1C 0101 01 1010		10101010 0101010	1010י ' 101י (101 101	01C 01C	010 0101)1100)1001)10100101 01010100			`1010 1)101		1010 1010	.0101		01100 010101001
1001010 31010		10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0101010	101 10				1107	010)010	0101		010101010)100			010101	101	1010101
00110076.		011nc	. J10101u		0101		ύ10			.101)10C	ار 1010		001010101			1046			101010)1010 _{1 i}	
10100110010101																			1010	1104	J101 1101	
1001010101010100 01110010101010																	01010010		. J1001 10010101) 0101011	7001C 110100101	10101ر 010101010
10101110010101																			01010010			101010101
01010101110010						4 .																
101010101011110 0101010101010101	01010101010	100110010	1010101010	101000101	110101010101	01010101	110101010	10101010	1010101	0 001	010101	1010001	100110	110101010	0010101	101010011	00101010	010101001	011001010	100101010	010101011	110100101
101010101010101	101110010	101010100	0110010101	1010101000	^^11011101	01010 1	0101 110	1 10 J1C)10 1	0 10	1000	21010	10001	001 11	010	001 010)i 1ic	10 /1010	1 0 .011	001010100	101010010	101011110
	0101011100			· .			1010 1101	01 1111	21 .0	1 010	110	10101	21010	10 00	001 1	110, 1010	00 101	10 01/0	01 /1010			101010010
)10101010101		N. V.		0101010101																	100101010
	0010101 01001	ว ว101น	11001010 10111001		0010101010 0110010101																	
		101010	1010111		0100110010																	011001010
		010101 010010)101010 1010101		1010100110				101010		0101	010101	0101010	10101010	,0010401	10101000	10011011	01010100	010101010	100110010	101010101	001011001
		11101′	,0101010		0101010100	. 1.			_									1.				101001011
	1001C \		010101000ء 01010100 <i>ء</i>		0010101010 1110010101		010 l0 101 J1		10° 10° 100	0101 01110		1010 9101)101 010 010 101								010101001 110010101
01010100101100																						
10101010100101 01010101010100																						010100110
1100101010101010																	0101010					010101010
10011001010101																	1010101					100010101
01010011001010		100101			1111010010									01010101			101010					010100010
10101010011001 0101010101010011					0101111010 10101111			11100101 ^4^1110^				1010101 0101010		10101010 11100101		1010 .0101	10101 11010					101010100 011001101
10101010001010			101()	11 ,016	010101001	(01)	100, 510	10 010		00 i U10		0011001		010101000		010101						100011001
10110101010001				1001)10010101	01010	1101001			111001		1010011		10101	0001/		910					010100011
00110110101010 01100110110101		01100 100			0101010010 11001010101			00 ⁷ 010 10 ⁸ 101				0101010 1010101)10101010)01010101		J1110101						101010100
10001101101101				01'	71100101010			101		0.				0110101010		101000101			0111010101010	10101010101	010101010 010101010	010101010 100010101
01010001100110) 110101010	 001010101	01001100	10101	J0101100	10101001	 010100101	 01011110	 1001010	 101010	0101010	0111001	0101010	 010011001	0101010	010101000	10111010	010101010	101011101	010101010	101010101	010100010

ONE Record :: ubiquitous data access

ONE Record :: simplicity of the web

ONE Record :: power of the web

ONE Record :: data sharing standard

Data standard: what we exchange

In a global transport and logistics environment there can be no single common data standards; there are many. Using ontologies (digital dictionaries) we can automatically interpret and translate data between parties

API standard: how we exchange

Web based data exchange is as old as the web (1991). Today the typical web API's are RESTful and sophisticated token based security like OAuth is easily implemented

Trust Network: who can exchange

Access to the Internet of Logistics will be managed through distributed trust networks that will be managed by accredited governance entities

ONE Record: :: making it happen

Develop

IATA's **ONE Record Task Force** is developing the ontologies (schema and vocabulary) and API standard as well as the governance and specification of trust networks

First draft → end 2018

Test

In cooperation with the Digital Cargo Forum (DCF), we are testing the data sharing concept with ontologies and API's in a real supply chain setting

Test exchanges → live already

Implement

Building on the test environment, new parties are being added to the network and the functional scope is being expanded

development, testing and implementation are done in parallel -> speed is essential

Connecting the air freight industry to increase its value proposition

Henk Mulder Head, Digital Cargo

IATA Aviation Data Symposium & Al Lab

Berlin, 19-21 June

Digital Disruption of the Supply Chain A digital transformation journey with Blockchain and IoT

Mario Louca – Executive Director Industry & Global Blockchain Leader IBM Global Travel & Transportation Industry

Latest news – Distrupting the supply chain

The New York Times

Blockchain: A Better Way to Track Pork Chops, Bonds, Bad Peanut Butter?

Cargo containers are loaded on a Maersk ship at the Port of Mombasa in Kenya.

PIL, PSA, IBM Conclude Blockchain Trial from Chongqing to Singapore

Shipping company Pacific International Lines (PIL), port group PSA International (PSA) and technology company IBM Singapore (IBM) have completed a blockchain-based supply chain platform trial.

As informed, the companies worked on a proof of concept (POC) exercise, built on IBM Blockchain Platform, applying and then testing the platform to track and trace cargo movement from

Chongqing to Singapore via the Southern Transport Corridor.

Dnata, provider of air and travel services in the Middle East, has announced the completion of a proof-of-concept examining blockchain's potential in the Dubai air cargo industry.

So, what are we disrupting?

Page 3 © 2017 IBM Corporation

Trade logistics is overly complex and fragmented

Receive shipments in carrier domain

Prepare export shipments

Transfer to forwarder hub

Transfer shipments to carrier domain

Operating Layer

epare freight for transport

Handover freight to forwarder Arrive shipment

Deliver, obtain POD & conclude

End to end trade is facilitated by different data standards through the process of moving fraight

Operating Layer

Check-in shipmen

Arrive shipment

Handover freight to forwarder

Transfer to forwarder hub

Prepare export shipments

Transfer shipments to carrier domain

leceive shipment in carrier domain

Messaging Layer

IBM Global Travel & Transportation

Documentation process being carried out in air cargo is manual and overly complex

Operating Layer

Transfer to forwarder hub

Messaging Layer

IATA CARGO-XML

UN/EDIFACT

RONIC DATA INTERCHANGE

IBM Global Travel & Transportation

Documentation process being carried out in air cargo is manual and overly complex

Although data standards and protocols exist, they are fragmented along the supply chain

✓ No single participant has full visibility into the shipment life cycle

Although some documents are digitized, from 30 to 200 documents are still been processed per shipment manually

- ✓ More error-prone
- **Duplication of messages**

Leading to more Invoice Disputes and High Transaction and **Settlement Fees**

✓ Dispute resolution for shipment delays and damaged or lost goods caused cargo losses of \$55B in 2015

Resulting with an average end-to-end shipping of 6 days for air and much longer for container shipping

Our vision

To eliminate physical paper from the supply chain by digitizing end to end trade lanes, enabling the synchronous flows of physical good with associated documents and messages in real time.

Creating a single secure event driven and document exchange cloud-based platform supporting the global supply chain

age 8 © 2018 IBM Corporation

Our toolbox of assets

Shipment Tracking & Monitoring
At Piece Level

Digitalizing Documents & Workflows

Global Trade Digitization
Container Shipping

GHA SLA Management

Multi Modal Platform
Multi Data Standard Unification

Dispute Resolution

Customs Clearance

Watson Trade Compliance

Customs Declarations

IBM is working with a number of airlines, shippers, airports and logistics providers to leverage Blockchain & Watson Al

Tracking and monitoring shipments at piece level in real time – *Major Asian Airline*

- Track shipments of perishables from a supplier to the Consignee
- Utilizes QR code and temperature monitoring devices to log real time status through the shipment.
- Participants included Shipper, Freight Forwarder and the Consignee.

Document digitalization across the supply chain

- Digitizing documents for faster movement of shipments along trade lanes.
- Earlier pre-clearance of documents and goods and automating the works flows for improving border inspection clearance procedures.

Improve Ground Handling SLAs and Claim Management – Major European Airline

- Digitizing key ground handling events including the capture of FSU messages in real time (as events)
- This allows for the analyse of the FSU message to track and monitor service levels.
- Smart contracts are now used to automate the dispute management workflow.

Accelerating trade and removing barriers to trade in container shipping

- **MAERSK**
- Digitizing all events and documents for real time tracking, monitoring and automating workflows along trade lanes
- Sharing a single trusted view with all parties of events & associated documents

Utilizing Blockchain to track and monitor shipments at piece level in real time

The Business challenge

- Transportation of perishable goods need to me maintained within a specific temperature range for quality control purposes
- Tracking shipments along trade lanes is not sufficient, monitoring in real time is also essential

The Solution

- Use the Blockchain to track a shipment of perishables from a supplier to the Consignee (a restaurant chain)
- Utilize QR code and temperature monitoring devices to log QR code data and temperature data to the Blockchain in real time through the shipment life cycle
- Participants included, Shipper, Freight Forwarder, Consignee

The Participating Parties

- Shipper & Consignee
- The airline
- Freight Forwarder

Utilizing Blockchain to improve document sharing across the supply chain

The Business Problem

- Over 30 documents are still been processed per shipment manually
 - ✓ More error-prone
 - ✓ Impacting Customs Clearance with an average end-to-end shipping is 6 days
- Many of the data elements involved in the booking process and the shipment documentation are repeated

The Solution

- Build a blockchain solution for managing shipment documents and capturing critical events throughout the life cycle of a shipment
- Eliminate original paper forms and communicate with authorities digitally
- Automating the work flows for improving Lead time of procedures such as border inspection clearance

The Participants

- Shipper & Consignee
- The airline
- Freight Forwarder
- 3 x Customs Authorities

Accelerating trade and removing barriers to trade in container shipping using IoT and Blockchain

The paperwork and processes vital to global trade are also one of its biggest burdens. Maersk has digitilized this costly paper trail by partnership with IBM

Significantly reducing the cost of transportation while increasing clearance times

Business problem

 Paper based processes add cost and complexity to trades in the end to end ecosystem of the Maersk business and customers. Large volumes of administration and documentation create billions of dollars in costs.

Solution

 IBM's blockchain and Internet of Things technology is used to create a Global Trade Digitisation (GTD) solution providing transparency and to enable all relevant and approved parties in the supply chain access to the information they need and the ability to act on it.

The ecosystem will include the network members, clients, and offering providers

Provide and gain access to endto-end supply chain information

- Ocean carriers
- Ports and terminals
- Government authorities
- Inland transportation
- 3rd party data providers

Primary consumers and beneficiaries of the platform

- Shippers (BCOs, retailers, manufacturers, etc.)
- Freight forwarders, customs brokers, 3PL
- Network Members
- Financial institutions

Offer value added services to the ecosystem through a platform marketplace

Applications Marketplace

- Shipping Information Pipeline and Paperless Trade
- Offerings from third party ISVs
- Offerings from Network Members and Clients

Final use case - Unifying the data standards

Cargo-XML Cargo-IMP

UN/EDIFACT

One connection provides access to all trading partners regardless of data protocols, formats or standards.

A platform to solve the pain points in the supply chain

BLOCKCHAIN Nicolas Kozakiewicz

BLOCKCHAIN is the NEW MULTI-MARKET

TRUST-ACEABLE PROTOCOL PROTOCOL PROTOCOL POR END 2 END DIGITAL SERVICES

EXAMPLE: BITCOIN

TRACEABILITY IN MANUFACTURING

ORIGIN: RETURN OF EXPERIENCE

CONSUMER FACING TRACEABILITY CLAIM

DIGITAL PROOF-BASED TRUST - BLOCKCHAIN TECHNOLOGY

Market needs

Our value proposition

Scan me to know my story

The first food traceability label that provides consumers with proofs of product history

An history carried by the product itself

Blockchain

recreates the digital copy of the physical path taken by a product

What the solution does bring

For consumer

What the solution does bring

For blockchain participants

Pay-per-use model

Technological choice: Worldline

DESIGN

- > Use case specification close to the customer
- > Blockchain sourcing choice
- > Governance formalization

DEVELOPMENT

- > Blockchain set-up (& customization if needed)
- > Legacy IT development : GUI, gateway, .. & blockchain API
- > Test & iterative validation

OPERATING

- > Cloud infrastructure hosting & document storage
- > Processing
- > Maintenance & evolution
- > Governance

Technological choice: MoBlo

Go through the 4 categories, ask an expert if required

Technological choice: Multichain blockchain

Robustness

Private blockchain - bitcoin fork

Trust

Fine-grained management of access rights and enrolment - Pseudoanonymization

Integrity

Proof Of Work - mining done by various actors

Solution architecture

Multi-sector solution: Only one blockchain for any usage

Fine-grained management of data confidentiality

Open

Data accessible to every participant and consumer.

Restricted

Data accessible only to the participant that wrote it.

Controlled

Data accessible to an group of participants.

Homomorphic

Possible controls on encrypted values.

Illustration (1/2)

B2B INTERFACE FOR THE TUNA SUPPLY CHAIN

Illustration (2/2)

CONSUMER INTERFACE FOR THE TUNA SUPPLY CAIN

End consumers can scan a product and get access to its full history

- Provenance (one or more fishing)
- Fishing area
- Transformation location

Real Time, All the Time

Marcus Stoneham

THE INTERNET OF THINGS

Sources: IDC, MC/EDC: The Digital Universe of Opportunities, Goldman Sachs, IMS Research

50 Billion
Devices

212 Billion
Sensors

THINGS

NETWORK SERVERS

CLOUD

In the past 10 years...

Cost of Sensors

2X **‡**

Cost of Bandwidth

40X **♣**

Cost of Processing

Device Agnostic Approach

Leading Innovation

Youtube - Honeywell Cargo Signal

Sensor-Based Logistics Platform

© 2017 Cargo Signal Solutions, LLC. Business Confidential and Proprietary. Reproduction by written authorization only.

Visibility

Harness the power of IoT achieving new levels of speed and accuracy

Quality

Analyze and act upon sensor data with location to improve processes

Security

Protect your brand and gain global control of your cargo

Sensor Readings and Location Combined

Case Study 1

- 1. \$150,000 USD of Controlled Substances (Narcotics)
- 2. Shipping from Barcelona, Spain to Chicago, Illinois
- 3. Temperature Controlled 15-25°c

Case Study 2

Valuable Semi-Conductor Prototype

- 1. High value, time sensitive next day delivery
- 2. Critical element to the success of electronics manufacturer's project
- 3. Shipping from Taipei, Taiwan to US
- 4. On-site engineers ready to receive shipment

Our Command Center confirmed that the shipment arrived successfully at the Taipei airport and was waiting to be loaded onto the aircraft.

After confirming flight take-off, our team noted that the sensor on the cargo was still actively reporting its current location on the tarmac at TPE airport

The branch contacted the airline which confirmed not once, but twice, that the cargo was aboard the scheduled flight

The Command Center and branch teams persisted, and in the third conversation, presented with a precise screenshot of the sensor's current reporting location, the airline confirmed that it had failed to load the shipment onto the flight

Fortunately, the airline was able to re-load it onto the very next direct flight and arrival was delayed by only a few short hours

The "Noise" In Today's Supply Chain

ASSUMING:

System integration between all parties
Sub-contracted carriers understand requirements
Driver provides accurate updates
Cargo placed on correct conveyance
Cargo stays with driver

Enabling Real Time Decisions

Challenges & Considerations

Airline Compliance

- ✓ Airline approval process
- ✓ DG rules on lithium batteries

Customs Compliance

✓ Different countries = different rules.....

Meticulous T&I set up required

- ✓ Loading / managing / returning the tracking device
- ✓ Routing plans
- ✓ Business rules: permitted temperature excursions, shock limits etc

Challenges & Considerations

Integration with all supply chain partners

- ✓ Need to know who will touch the freight
- ✓ Subcontractor selection and management
- ✓ 24/7 contact information eg, driver details

Reaction speed

- ✓ Ability to predict issues before they happen
- ✓ Immediate responses required from stakeholders
- ✓ No time to investigate who to contact!

Innovative sensor-based logistics across a customer's supply chain

Digital services powered through the Company's proprietary, cloud based operating system

Enhanced shipment visibility, integrity and security

All services offered whether Expeditors is the carrier or not

Lease hardware with software or on per shipment basis

© 2018 Cargo Signal Solutions, LLC. Business Confidential and Proprietary. Reproduction by written authorization only.

