

IATA Open Air API Standards

and Best Practices
Version 1.0

May 2020

2 IATA Open Air API Standards and Best Practices

Contents

1. Introduction ... 3

1.1. Purpose .. 3

1.2. Audience .. 3

1.3. Document Structure .. 3

2. Open Air API Standard .. 3

2.1. Objective .. 3

2.2. Interpretation .. 3

2.3. API specification .. 3

2.3.1 OpenAPI Object .. 4

2.3.2 Info Object .. 4

2.3.3 Server Object .. 5

2.3.3.1 URL .. 5

2.3.4 Components Object .. 5

2.3.5 Paths Object .. 6

2.3.5.1 Resource Naming ... 6

2.3.6 Paths Item Object... 6

2.3.7 Operation Object .. 7

2.3.8 Parameter Object ... 7

2.3.9 Request Body Object .. 7

2.3.10 Responses Object ... 7

2.3.11 Response Object ... 7

2.3.12 Tag Object .. 8

2.3.13 Schema Object ... 8

2.3.13.1 Schema Definition ... 9

2.3.13.2 Primitive Data Types.. 11

2.3.13.3 Traceability ... 12

2.3.13.4 Error Structure ... 12

2.3.14 Security Scheme Object ...13

3. Appendix ... 14

3.1. Airline Value Chain ..14

3.1.1 Artifacts and Properties ...15

3.1.2 Business capability Mapping ..15

4. Glossary ... 15

5. References ... 16

3 IATA Open Air API Standards and Best Practices

1. Introduction

1.1. Purpose
IATA’s Open Air initiative was created to develop industry standards and best practices for the use of RESTful

API technology in the airline industry, and an API ecosystem conformant to the standards.

The purpose of this document is to define a common technical approach to describing API Definitions so that

industry parties can benefit from a shared understanding leading to efficiency of API development,

understanding, implementation and use of conformant APIs.

1.2. Audience
This standard assumes the reader has an understanding of the OAS 3.0 specification, and AIDM methodology.

This document is intended for:

• API developers in the airline industry, who have experience in RESTful API design and development;

• Enterprise Architects responsible for the coherent strategies of their companies’ integration policies;

• Planners and Managers responsible for delivering business integration solutions.

1.3. Document Structure
The document covers each OAS Object and its fields or patterned fields where there is a variation with the OAS

Standard, or where the Object is required but no variation is defined. The OAS nodes affected by this standard

are shown in Figure 1 – Open API Standards Scope.

Variances in the standard for an Object that appears in more than one place, that is, more than one node in the

OAS specification are detailed in a sub-section of the section covering the Object.

The sections detailing each object are ordered as they appear in the OAS Standard.

2. Open Air API Standard

2.1. Objective
The objective of this standard is to ensure API Documents are consistent in their structure, nomenclature and

semantics and to enable the data structures in conformant messages to be validated; JSON Schema keywords

for validation are utilized to achieve this.

2.2. Interpretation
When describing the Best Practices and the Checklist, the key words "MUST", "MUST NOT", "REQUIRED",

"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119.

2.3. API specification
This section defines the Open Air Standard and Best Practice for API specification. API specification is a

reference manual on the API capability, meaning how the API behaves and what to expect from the API. A well-

documented specification will help developers to understand and adopt the API.

https://tools.ietf.org/html/rfc2119

4 IATA Open Air API Standards and Best Practices

An IATA Open Air API document MUST be RESTful, MUST adhere to OAS 3.0 standard, and MUST use HTTPS

protocol. All data structures MUST be defined using JSON Schema with modifications as defined in the OAS

3.0 standard. Each Open Air API document MUST be available in JSON format, and MAY in addition be available

in YAML format.

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs. The Open

Air Standard leverages OAS 3.0 and covers the usage of the OAS 3.0 objects and fields shown in Figure 1

below. This document does not intend to describe the usage of all required or optional OAS objects and related

fields. Any API defined using the Open Air Standard MAY make use of any other objects and fields of the OAS

3.0 Standard, but any such usage MUST NOT affect the meaning or behaviour of the objects and fields covered

by this standard.

Figure 1 – Open API Standards Scope

2.3.1 OpenAPI Object
OpenAPI Object is the root document object of the OAS 3.0 specification.

In IATA standard API specification, the value of openapi attribute MUST be 3.0 or a minor version there-of. It

means the API specification is documented using Open API Specification 3.0.

Example:
"openapi": "3.0.2"

2.3.2 Info Object
Info Object provides metadata about the API.

5 IATA Open Air API Standards and Best Practices

Each specification (OAS) MUST have its own version. Version notation MUST follow Semantic Versioning 2.0.0.

Example:
"info": { "version": "1.0.1"

…

 }

2.3.3 Server Object
Servers Object include an array of Server Objects. The Server Object provides connectivity information to a

target server.

2.3.3.1 URL

In order to make sure the consistency of url formatting and better readability:

1. All characters in url SHOULD be in lowercase.

2. A hyphen (-) MUST be used in url to separate multi-word phrases.

Examples:
http://api.example.com/inventory-management/managed-entities/{id}/install-script-location //More

readable

http://api.example.com/inventory-management/managedEntities/{id}/installScriptLocation //Less

readable

3. File extensions MUST NOT be included in the server url.

It does not add any value to use file extension and makes the url longer. Instead of using file extensions,

mime-type should be used to identify the type of data.

Description field MUST be defined for each Server Object structure.

Servers Object Example:
"servers": [{

 "url": "https://test.iata.org",

 "description": "User Acceptance Testing environment"

 }, {

 "url": "https://prod.iata.org",

 "description": "Production environment”

 }]

2.3.4 Components Object
Holds a set of reusable objects for different aspects of the OAS. All objects defined within the components

object will have no effect on the API unless they are explicitly referenced from properties outside the

components object.

There are no variations to the OAS Standard defined for this object.

6 IATA Open Air API Standards and Best Practices

2.3.5 Paths Object
The Paths Object holds the relative paths to the individual endpoints and their operations. The path is

appended to the URL from the Server Object in order to construct the full URL of the resource.

2.3.5.1 Resource Naming

In REST, primary data representation is called Resource. Generally, a resource is a thing not an action and is

identified by a noun. HTTP Verbs MUST be used to define the action to be performed on the Resource.

Table 1 categories resources and defines the nature of the resource name for each category.

Resource Category Name Style

Collection Plural Noun

Document Singular Noun or Unique Identifier

Controller

(such as business process

resource)

A controller resource models a procedural concept. Use “verb” to define a

directive action to be performed by a Resource.

e.g. http://api.example.com/cart-management/users/{id}/cart/checkout
Table 1 - Resource Naming Conventions

The general pattern of a Resource Name being:

For example: “/customers/12345” for the URN “/customers/{customerId}”.

The Root and Child Resource Name MUST be the names of ABIEs or ASBIE Roles optionally preceded with a

Status separated by a forward slash (“/”). Resource name SHOULD be identified by a noun, unless the

archetype is Controller. Resource name MUST be plural unless it is a singleton resource in which case a

singular noun MUST be used.

The Child Resource UID MUST be the unique identifier components of the ABIE separated by a hyphen.

The hierarchical structure of a Resource Name MUST be constructed by traversing through the Integrated Data

Model in the AIDM moving from an ABIE (Resource) to a child ABIE (Resource) via an ASBIE (Hierarchical Link).

2.3.6 Paths Item Object
Describes the operations available on a single path. A Path Item MAY be empty, due to ACL constraints. The

path itself is still exposed to the documentation viewer but they will not know which operations and parameters

are available.

There are no variations to the OAS Standard defined for this object.

https://swagger.io/specification/#securityFiltering

7 IATA Open Air API Standards and Best Practices

2.3.7 Operation Object
Operation Object defines the HTTP methods can be used to access a path. A unique operation is a combination

of a path and an HTTP method. A single path can support multiple operations.

OAS 3.0 supports HTTP methods of get, post, put, patch, delete, head, options, and trace. In Operation Objects,

the specification MUST follow all HTTP methods definition and guidance in RFC7231.

2.3.8 Parameter Object
Parameter Object describes a single operation parameter. A unique parameter is defined by a combination of a

name and location.

There are four possible parameter locations specified by the “in” field:

1. path - Used together with Path Templating, where the parameter value is actually part of the operation's

URL. The path parameter is required in all cases to access the API.

2. query - Parameters that are appended to the url. e.g /users?role=admin

3. header - Custom headers that are expected as part of the request. Refer to RFC7230 for more

information

4. cookie - Used to pass a specific cookie value to the API. Refer to RFC6265 for more information

Path parameter SHOULD be used to identify a specific resource via UID, e.g get /users/{id}.

Query parameter SHOULD be used to filter or sort the sources.

The parameter name MUST follow camel case as naming convention.

2.3.9 Request Body Object
The Request Body Object describes a single request body, which is used to send data via REST API.

A Request Body SHOULD be used to send resource information, that is, content, in order to create or update

the resource, in POST or PUT operations respectively.

2.3.10 Responses Object
A container for the expected responses of an operation. The container maps a HTTP response code to the

expected response.

There are no variations to the OAS Standard defined for this object.

2.3.11 Response Object
Response Object describes an expected response of an operation. A response is defined by its HTTP status

code and the data returned in the response body and/or headers.

In IATA standard API specification:

1. Response MUST be defined for HTTP status codes of 2xx (successful), 4xx (Client Error), and 5xx

(Server Error). Refer to RFC7231 for the available status code and definition.

2. The media type “application/json” MUST be used by default.

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7230#page-22
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc7231

8 IATA Open Air API Standards and Best Practices

2.3.12 Tag Object
The Tag Object adds metadata, including name and description, to a single tag which can be used for logical

grouping of operations for the specific resource. In OpenAPI Object, the tags fields MUST be denoted to

declare the list of Tag Object used in Operation Object in the specification.

In Operation Object, tags field contains a list of tag names of Tag Objects defined within OpenAPI Object. The

operation.tags field MUST include a list of Airline Value Chain business capabilities key words (refer to

Appendix 3.1 for more information).

For example, “Flight Status” API has “Communication Management” as Business Capability.

Example:
{

 "openapi": "3.0.0",

 "tags": [{

 "name": "communication-management",

 }],

 "paths": {

 "/v1/flights": {

 "get": {

 "tags": ["communication-management"]

…

}

2.3.13 Schema Object
The Schema Object allows the definition of input and output data types. These types can be objects, but also

primitives and arrays. This object is an extended subset of the “JSON Schema Specification Wright Draft 00”.

For more information about the properties, see “JSON Schema Core” and “JSON Schema Validation”. Unless

stated otherwise, the property definitions follow the JSON Schema.

In IATA standard API specification:

1. If the data type is object, Schema object MUST be defined within Components Object, which can be

referenced from other objects in the specification

2. If the data type is primitives, schema object MAY be defined in line with the parent structure

3. Regular expressions SHOULD be defined using the JSON Schema keyword “pattern”; for data

validation purposes.

http://json-schema.org/
https://tools.ietf.org/html/draft-wright-json-schema-00
https://tools.ietf.org/html/draft-wright-json-schema-validation-00

9 IATA Open Air API Standards and Best Practices

Example:
 "parameters”: [{

 "name”: "agencyCode",

 "in”: "path",

 "required”: true,

 "schema”: {

 "pattern”: "^[0-9]{8}$|^[0-9]{7}$",

 "type”: "string"

 }

 }]

4. Examples structure MUST be defined for all schema objects in the API specification

2.3.13.1 Schema Definition

This section defines the standard for describing shareable data structures that appear as Schema Objects in

the Schemas section, within the Components section.

The organization of data structures in this standard is similar to the Venetian Blind concept in that all object

definitions are defined globally and may be reused by other objects in the Schemas section.

As all data structures MUST be derived from an AIDM Logical Data Model. Table 2 defines how to represent

that data element in an API schema. In addition, Table 3 defines how to construct the physical name of an

element from the business name.

Element Type AIDM Derivation API Schema Template

Object ABIE

BDT

"name": {

 "type": "object"

}

Object

Mandatory

Elements

BBIE

CON

SUP

"required": ["<mandatory element name>"…]

Property BBIE

CON

SUP

"properties": {

 "<name>": {

 },

}

Association |

Classification

ASBIE "<role name | target ABIE name>": {

 "type": "array",

 "minitems": <minimum cardinality>,

 "maxitems": <maximum cardinality >,

 "items": {

 "$ref": "#/components/schemas/<name of referenced object>"

 }

}

Enumerations ENUM

CodelistEntry

"name": {

 "type": "array",

"items": {

 "type": "<Restricted Primitive>",

 "enum": ["<code list entry name>"…]

 }

}

10 IATA Open Air API Standards and Best Practices

or for open enumerations (that is,

enumerations with no CodelistEntry)

"name": {

 "type": "<Restricted Primitive>",

 "pattern": "<Pattern Tag Value>"

}

Primitives {

"type": "<primitive name>",

"format": "<format string>"

}

Association

Mutual

Exclusivity

XOR "OrderOwner": {

 "oneOf": [

 {"$ref": "#/components/schemas/< objectA>"},

 {"$ref": "#/components/schemas//<objectB>"}

]

}

Table 2 - Implementing AIDM Logical Elements

Source / PIM Model Element Element Name* JSON Schema
Type

ABIE ABIE Name Object

BBIE BBIE Name Property

BDT (with restriction of SUPS) BDT Name Object

BDT (without restriction of SUPS) BDT Name Property Type

CON “Value” Property

SUP SUP Name Property

ENUM ENUM Name Object

CodelistEntry CodelistEntry Name Enum Array Element

ASBIE If present use the Source Role Name

otherwise use the Source ABIE Name

Ref

PRIM See Section 2.3.13.2 Primitive

Table 3 - Nomenclature

* Note that all Element Names MUST be in camel case and have AIDM abbreviations applied in order of length starting with the longest. For

example, if there is an abbreviation of PO for Post Office and an abbreviation of PST for Post, if you apply PST abbreviation first, the

outcome will be PST Office, whereas applying the longest phrase to be substituted will result in the outcome of PO; which is the desired

result.

An objective of this standard is the validation of the data content of instances of OAS Documents. Keywords,

as well as data structure, are used to address this objective. Table 4 identifies the allowable keywords for

validating the content of data and the cardinality of arrays.

Keyword Derivation

minlength BBIE, CON, SUP Tagged value “minimumLength”

maxlength BBIE, CON, SUP Tagged value “maximumLength”

minimum BBIE, CON, SUP Tagged value “minimumInclusive”

maximum BBIE, CON, SUP Tagged value “maximumInclusive”

exclusiveMinimum BBIE, CON, SUP Tagged value “minimumExclusive”

11 IATA Open Air API Standards and Best Practices

exclusiveMaximum BBIE, CON, SUP Tagged value “maximumExclusive”

pattern BBIE, CON, SUP, ENUM Tagged value “pattern”

minitem ASBIE Lower Value of Source Cardinality

maxitems ASBIE Higher Value of Source Cardinality

Table 4 - Allowable Keywords for Validation

2.3.13.2 Primitive Data Types

In the AIDM a Content Component and a Supplementary Component may be classified by an enumeration or by

a primitive data type. If an attribute is classified by an enumeration the Primitive Data Type can be found in a

tagged value called “restrictedPrimitive”; otherwise the classifier is the primitive data type. In either case the

primitive data type must be transformed into a platform dependent data type as defined in Table 5 below.

Reference to PRIM in AIDM Reference to standard OAS data type Format

AnyURI string uri

Binary string binary

Boolean boolean

DatePoint string date

Decimal number double

Double number double

Float number float

Integer integer int32

NormalizedString string

String string

TimeDuration string duration

TimePoint string date-time

Token string byte

Table 5 - Implementation of Primitive Data Types

12 IATA Open Air API Standards and Best Practices

Schema Object Example:
"components": {

 "schemas": {

 "customer": {

 "type": "object",

 "properties": {

 "active": {

 "type": "boolean"

 },

 "code": {

 "pattern”: "^[0-9]{8}$",

 "type": "string"

 },

 },

 "example": {

 "code": "98210019",

 "active": true

 }

 }}}

2.3.13.3 Traceability

No traceability from AIDM to API data elements is demanded. In future the keyword “$comments” may be used

to describe the derivation of a data element from the AIDM. Including but not limited to the node path and name

of the diagram used to generate the data structure and the date and time it was generated, and the navigation

path and GUID of the source data element.

2.3.13.4 Error Structure

IATA standard API SHOULD use the below general error object structure within the Component Object to

handle the general error message as part of an API response.

Field

Name

Date

Type

Description Optionality

id string A unique identifier for this specific instance of the error. Optional

status string The HTTP status code applicable to the error. Mandatory

code string an application-specific error code. Optional

title string A short, human-readable summary of the problem that SHOULD

NOT change from occurrence to occurrence of the error, except

for purposes of localization.

Optional

language string The code of the language used in the error message. Not

required when the language is a variant of English.

Optional

detail string a human-readable explanation specific to this occurrence of the

issue.

Optional

13 IATA Open Air API Standards and Best Practices

url string A link to an on-line description of the error where one COULD

find statements pertaining to the consequences of the error and

indications as to actions that might be taken and actions that

should or must not be taken.

Optional

Table 6 - Components of the Standard Error Structure

Error Structure Example:
"components": {

 "schemas": {

 "error": {

 "type": "object",

 "required": ["status"],

 "properties": {

 "id": {"type": "string"},

 "status": {"type": "string"},

 "code": {"type": "string"},

 "title": {"type": "string"},

 "language": {"type": "string"},

 "detail": {"type": "string"},

 "url": {"type": "string"}

 }

 }

 "errors" : {

 "type" : "object",

 "properties" : {

 "errors" : {

 "type" : "array",

 "items" : {

 "$ref" : "#/components/schemas/error"

 }

 }

 }

 }

 }

}

…

 "404": {

 "content": {

 "application/json": {

 "schema": {

 "type": "object",

 "items": {

 "$ref": "#/components/schemas/errors"

 }}}}}

2.3.14 Security Scheme Object
The Security Scheme Object defines a security scheme that can be used by the operations.

In IATA standard API specification:

14 IATA Open Air API Standards and Best Practices

1. APIs SHOULD apply OAuth 2.0 as security mechanism.

2. APIs SHOULD apply OWASP best practices. Additional information can be found at www.owasp.org.

3. Appendix

3.1. Airline Value Chain
Figure 2 below shows a chain of primary activities and their process areas that a firm is operating in the airline

industry performs in order to deliver a valuable product or service to the market.

Figure 2 - Airline Value Chain Reference Model

http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Service_(economics)
http://en.wikipedia.org/wiki/Market_(economics)

15 IATA Open Air API Standards and Best Practices

Customer Touch-Point Capabilities

Business capabilities needed to deliver the core product to the customer. Organized by the lifecycle of product

delivery.

Operations

Business capabilities needed to enable the running of “passenger airline” business. Organized by typical

business planning cycle.

Support & Management

Business capabilities needed to enable the running of “any” business.

3.1.1 Artifacts and Properties

3.1.2 Business capability Mapping
The main Business Support Capabilities supported by the API should be identified by the provider. This will

enable the API consumer to identity which areas of their business are most likely to benefit from the API.

4. Glossary
Term Meaning

Camel Case A method of creating a label from a word, acronym, or phrase by capitalizing the

first letter of all words or acronyms except the first and removing all white spaces

and hyphens. All other letters must be in lower case.

AIDM Airline Industry Data Model

ABIE - Aggregated

Business Information

Entity

An ABIE is a collection of related pieces of information in AIDM that together

convey a distinct meaning. An ABIE is the representation of an entity/object class,

contains attributes/properties, and may participate in associations with other

ABIEs.

Artifact Description

Business Primary Activity

Entry point of the Business Activities

Business Support Capability

It describes Business Processes capability details for a specific business purpose.

v alue chain Diagram

PrimaryActivity

class Airline1

ProcessArea

16 IATA Open Air API Standards and Best Practices

BBIE - Basic Business

Information Entities

A BBIE represents an attribute of an ABIE.

ASBIE - Association

Business Information

Entity

An ASBIE defines an association between one ABIE (the “associating” ABIE) and

another ABIE (the “associated” ABIE). ASBIEs are UML associations of

AggregationKind either “shared” or “composite”.

BDT - Business Data

Type

A business data type defines the value domain – set of valid values – that can be

used for a particular BBIE. It represents a complex element, as a BDT has one

content component and any number of supplementary components.

PRIM - Primitive Data

Type

A PRIM represents basic building blocks for defining value domains of content and

supplementary components. UN/CEFACT has defined a finite set of PRIMs. A

PRIM may have a set of facets restricting the value domain.

ENUM – Enumeration

Type

An ENUM is a collection of items that is a complete, ordered listing of all of the

items in that collection.

5. References
Open API Specification 3.0.2 https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/3.0.2.md

JSONAPI Specification and Best Practice https://jsonapi.org/

REST Resource Naming Guide https://restfulapi.net/resource-naming/

OAuth2 specification https://oauth.net/2/

Swagger.io https://swagger.io/docs/specification/about/

JSON Schema https://json-schema.org/

AIDM Guidelines https://airtechzone.iata.org/docs/AIDM%20Guidelines.zip

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://jsonapi.org/
https://restfulapi.net/resource-naming/
https://oauth.net/2/
https://swagger.io/docs/specification/about/
https://json-schema.org/
https://airtechzone.iata.org/docs/AIDM%20Guidelines.zip

