COVID-19
 Cost of air travel once restrictions start to lift

Brian Pearce

Chief Economist
$5^{\text {th }}$ May 2020

Will air fares be high or low as borders open?
 Usually fares set to stimulate demand but restrictions will raise costs

Factors suggesting lower cost of air travel

- Weak demand
- Low fuel prices
- Excess capacity
- LCCs potentially returning sooner to market

Factors suggesting higher cost of air travel

- Unit costs increasing if
- Social distancing required
- Sanitization increases turnaround times
- Infrastructure charges rise

In the first few months of restart demand will be low Return to work \& VFR generate some demand, but consumers cautious

Currently significant overcapacity in the market With fixed costs to pay the incentive will be to bring back into service

Global fleet by usage, by aircraft type, Jan-May 2020

Competition potential to be fierce as markets open up Despite consolidation 80% seats on routes with 2 or more airlines

Distribution of global routes and seats by number of carriers competing on route, 2019

80\% of seats are on routes where several carriers compete

The largest variable cost, fuel, will be lower than before Excess supply of oil should keep fuel unit costs low as restart begins

As markets open, airlines will try to stimulate demand

 Air fares were cut 40% as China's domestic market re-openedBookings (thousand passengers)

Social distancing on aircraft would challenge viability Leaving seats empty raises unit costs and could reduce unit revenues

Aircraft with a 3-3 seat configuration, if middle seats have to be left empty

Average break-even load factors by region

Maximum load factor falls to 62% with other aircraft Social distancing removes higher proportion of seats vs narrow-body

With social distancing on aircraft few airlines break even

 In 2019 only 4 airlines had breakeven load factors less than 62\%EBIT Break-even load factors (LFs) of 122 airlines, most recent year available (\%)

- Of a sample of 122 airlines, only 4 could break even at load factors below 62\%
- The other 118 airlines, with their current pricing policies, would become loss-making at load factors below 62\%

Fares 43-54\% higher to get breakeven if 62\% seats limit Unit costs would rise sharply with fewer seats. Zero profits assumed.

2019 average base fares vs. estimated minimum average base fares if max. 62\% of seats can be filled and airlines only break even (i.e. make no profits)

Average fare, 2019 Adjusted fare (est.)

- To break even while selling fewer seats, airlines would need to increase fares
- Depending on the region and its baseline average achieved load factor, we expect the fare increase to be between 43-54\%
- This is based on estimated achieved load factors of 53% (62% weighted average cap on seats times 85% assumed load factor, to account for benefits of capacity optimization with current oversupply in market)

Fares low initially, but air travel could become costly Restrictions on seats and aircraft utilization will increase unit costs

Downward pressure on fares		Short run		Long run	
	Fuel prices		Fuel prices very low	\square	Economy and fuel prices recovered
	Excess capacity		Most of fleet grounded	■	Capacity matches demand
	Weak demand		Low passenger confidence and lower discretionary income	-	Capacity matches demand
pward	Lower utilization		Cap on load factors prevents optimal utilization of aircraft		Significant constraint on capacity utilization
pressure on fares	Increase in operating costs		Increased unit cost, e.g. crew time		Increase in costs may be passed on in fares

Contacts

economics@iata.org www.iata.org/economics

