Operations Planning
Agenda

- 0900 - 0930 Introductions and Opening Remarks
- 0930 – 1015 Operations Planning
- 1015 – 1045 Break
- 1045 – 1215 Operations Control
- 1215 – 1330 Lunch
- 1330 – 1500 Operations Cost Management
 - Cost of Delay
- 1500 – 1530 Break
- 1530 – 1630 Operations Management - exercise
- 1630 – 1645 Operations Cost Assessment – explanation
- 1645 – 1700 Summary – Key Takeaways
- 1700 Closing Remarks – ACC Update Information
Operations Planning – Team Discussion

- At your airline, or in your view,
- What does “Operations Planning” mean?
- What are some major components of Operations Planning?
 - Prioritize 5
- What are some major objectives of Operations Planning?
 - Prioritize 5
Operations Planning Objective

Balance Productivity, Efficiency, Cost vs. Revenue

Productivity

Efficiency

Financial

Airline Schedule or Plan
Operations Planning – Airline Schedule

To produce an operational schedule that is

✓ operationally achievable
✓ recoverable
✓ amendable

✓ at lowest possible cost
The schedule/operational model is one of the most complex tasks.

Operations Planning is a very complex task.
What are some major cost drivers to consider in developing the Operations Plan or Schedule ???
Schedule Planning - Cost Drivers

- **Schedule Design**
 - Marketing Objectives
 - Schedule Design Complexity
 - Schedule Recovery Options
 - Service Reliability Objectives

- **Asset Management**
 - Aircraft Assignment and Utilization
 - Maintenance Requirements
 - Crew Staffing and Utilization
 - Ground Facilities, Equipment, Personnel

- **Key Planning Components**
 - Required time(s)
 - Required services
Where to Begin?

Does the Schedule or Plan work???
Schedule Building Blocks

- Accurate operational times are critical for developing a viable operational schedule and maintaining an On-time airline

- 4 basic components
 - Blocktime
 - Ground-time
 - Maintenance time
 - Crew requirements
Operations Planning - Blocktime

- What is a “Blocktime”??

- Blocktime is the time from gate/pad departure (brake release) to gate arrival (brake set)
 - Taxi-out time
 - Flight time – takeoff to touchdown
 - Taxi-in time

- What does a scheduled blocktime represent??
Blocktime Scheduling

Example:
50% = 4:00
65% = 4:05
80% = 4:10

"Blocktime Standard"
What are some factors that would induce variation in the actual blocktime performance?
Blocktime Scheduling

Variability

- Type of Aircraft
- Time of Day
- Airport Environment
 - Arrival/Departure Capacity
 - Airport Ground Congestion
 - ATC System Capability
- Seasonal Wind Variability
- Crew Operating Policy

80% is typically a maximum Blocktime Standard
Blocktime Reliability - Going to Work

- Average Time enroute
- Potential for disruptions (traffic congestion, train schedule, weather)
- Likely level of variance (:05 to :30 minutes)

- Potential risk of inaccurate or less reliable time allotted
 - How early do I want to depart for work to ensure an on-time arrival with a high degree of reliability?
 - What level of late arrival will my boss accept?
Blocktime Standard – Schedule Reliability

Scheduled Blocktime
4:00 hours

Sked ARR Time
XYZ 1200

Depart
ABC 0800

Standard ground time
:50

Sked Depart
XYZ

Potential for Delayed Departure

50%
4:00

65%
4:05

80%
4:10

25 - 27 August 2014
Airline Cost Conference
Geneva
Schedule Reliability

Flight 1
Scheduled Time

Required
Ground Time

Flight 2
Scheduled Time

On-Time
Departure

On-time
Arrival

Late
Arrival

Late
Departure

Late
Arrival

Flight 1
Actual Time Enroute

+ :10

Required
Ground Time

+

Flight 2
Actual time Enroute

+ :10

Downline Delay

:30

+ :10
Blocktime Standard and On-Time

As a general rule,

- a 5% increase in block-time standard above 50%
- will produce a 3 – 4% increase in arrival performance
- with a corresponding improvement in departure performance
- dependent on the accuracy of the scheduled ground time
Schedule Building Blocks

- Accurate operational times are critical for developing a viable operational schedule and maintaining an On-time airline
 - Blocktime
 - Ground-time
Operations Planning - Ground Time

- Ground-time is time from arrival of aircraft at gate or pad to departure on next assignment
 - “block arrival to block departure”
- Must include time to perform all required services
 - Passenger Services – “above the wing”
 - Ramp Services – “below the wing”
- Support Functions – Security, Immigration, Passenger Transfer/Transportation
Groundtime

- Standard Schedule = 1:15 (STT)
- Minimum Required time = :55 (MTT)

Example: Preparing for work
- :30 Personal preparation (shower, shave, fix hair)
- :10 Coffee (optional)
- :05 Locate and select clothes
- :10 Dress for work
- :10 Check email (optional)
- :05 Gather material or tools (wallet, purse, computer, car keys)
- :05 Walk to car or bus/train
Ground Time Requirement

Aircraft Servicing Turnaround Timelines

Note: Dark line defines “critical path” or minimum required time
Accurate Blocktimes & Ground Times

- Determine the airline “published schedule”
- Used in assessing and costing
 - Number of aircraft required to operate the schedule reliably?
 - How many pilots/attendants are required to fly the schedule?
 - How the daily aircraft patterns and crew schedules flow?
 - How much Maintenance time and resource is required?
 - How the airports operate? Resources required?
 - Passenger/baggage/crew connection times
 - The Budget Cost to operate the schedule

“Essential” building blocks for airline Operations Planning
Schedule Building Blocks

- Accurate operational times are critical for developing a viable operational schedule and maintaining an On-time airline

- Blocktime
- Ground-time
- Maintenance time
Operations Planning - Maintenance

- Like your car, aircraft require routine, scheduled maintenance, but, they are **mandatory**

- All airlines are required to follow a continuous maintenance service and inspection “program” approved by their airworthiness regulatory authority

- Maintenance “checks” are **mandatory periodic inspections** that must be done on all commercial aircraft after a **specified amount of utilization** (i.e.: hours flown, cycles operated)
Maintenance “Checks”

- “A” Check (Service Check)
 - every 500 - 800 flight hours or 200 – 400 cycles

- Formerly known as “B” Check (Packaged Service Visit)
 - approximately every 3-6 months
 - typically accomplished in conjunction with several “A” checks

- “C” Check
 - whole aircraft is inspected approx. every 15–24 months

- “D” Check
 - Heavy Maintenance Visit (HMV) every 5–6 years
Operations Planning for Maintenance

- Must ensure airline schedule includes sufficient time for all maintenance tasks to be accomplished
 - within prescribed intervals in accordance with all Safety and Regulatory requirements
- “A” and “B” check requirements must be planned and coordinated with aircraft ground time opportunities in daily schedule
- Due to extensive downtime associated with “C” and “D” checks, they must be carefully built-in/coordinated with the airline’s operating schedule and long-term schedule development plans
Schedule Building Blocks

- Accurate operational times are critical for developing a viable operational schedule and maintaining an On-time airline

- Blocktime
- Ground-time
- Maintenance time
- Crew requirements
Operations Planning - Crew

- Operationally critical & high cost component of planning process

- Must balance
 - crew staffing, training, assignment
 - marketing plans and schedule requirements

- To ensure
 - a qualified crew in position to operate the schedule as needed
 - without requiring excess staffing and training
 - with the highest possible individual productivity
 - in compliance with all regulations
 - in agreement with labor contracts
Crew Cost Distribution

- Productivity: 62%
- Training & Transition: 34%
- Administration: 4%
Planning for Crew Productivity

- Changes to the schedule and aircraft fleet drive operations planning challenges and significant crew cost

- Crew Cost drivers
 - complex fleets
 - undergoing a fleet change
 - high schedule seasonality

Having a high % of pilots in training or non-productive status causes significant cost impact
Operations Planning for Schedule Reliability

- Validate Schedule Components
- Incorporate Required Times
 - If unable, adjust schedule accordingly
- Buffer – Operational Contingency / Schedule Recovery
- Track – Actual Results / Determine Root Cause
- Correct – Delay Cause / Schedule Inadequacies
- Adjust Schedule or Operation
Operations Planning for Cost Control

- Proper Planning components facilitate Schedule Reliability

- Schedule Reliability enables
 - service quality & revenue retention
 - efficient crew & aircraft utilization
 - maintenance reliability
 - efficient resource management
 - related cost control

- Maintenance Reliability facilitates
 - operational Safety
 - asset productivity
 - revenue generation

Operations Planning must continuously seek balance between Schedule Reliability and Cost Control to maximize airline profitability
How to Plan?

- IATA Recommendation:
 - *Integrated Operations Planning*
Integrated Operations Planning

- A corporate process for schedule design, review, and analysis which includes
 - all corporate functions or departments that are impacted by the schedule composition
 - and, all corporate entities that can influence airline performance against schedule or plan
- Ensures all have appropriate input for
 - schedule design & development
 - associated cost impact

Shared responsibility for performance results
Integrated Operations Planning

- How does your airline handle the operations planning process

- Which departments or functions should be included in the “Integrated” Planning process

25-27 August 2014
Airline Cost Conference
Geneva
Facilitate collaboration between Commercial objectives and Operational requirements in planning and scheduling

Optimize financial results from a balanced design perspective taking into account revenue, cost, and operational performance

Enable an airline to efficiently manage and respond to changes in global and competitive environment

Integrated Operations Planning is critical for success in today's ever-changing airline industry environment
Operations
Planning
Challenge
General Rule

- The earlier in the planning process an airline can "build in" the operational requirements and infrastructure to support its commercial and planning objectives,

- the more reliably and cost effectively the airline will perform
to represent, lead and serve the airline industry

Thank you!
Schedule Reliability vs. Crew Cost

Example:
- 50% = 4:00
- 65% = 4:05
- 80% = 4:10

Potentially very costly dependent on Crew Contract
Integrated Operations Planning Strategy

- Develop and sustain a balanced schedule/operations design to
 - maximize revenue at minimum cost
 - enable highest levels of operational performance/customer service
- Create a highly flexible schedule and infrastructure that can
 support any required changes to airline strategy
 - expand and contract the network quickly
 - while continuously optimizing revenue and controlling cost
- Provide a mechanism for operating groups to participate in
 planning and scheduling process
 - discuss enterprise impact of operational requirements and problems
 - evaluate new or alternative schedule/operational plans